







| HEAT TRACE LIMITED                                                                                                                                                          |                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| The Innovation Culture – the Past, the Present, and the Future<br>Heat Trace Limited                                                                                        | 4-5<br>6-7                               |
| 2 INDUSTRIAL HEAT TRACING – An Introduction                                                                                                                                 |                                          |
| What is it?<br>What is its purpose?<br>Steam or Electric?<br>The Need?<br>The System?<br>Safe Practice<br>Applicable Standards<br>Applications                              | 8<br>8<br>8<br>8<br>9<br>9<br>9<br>10-11 |
| 3 SYSTEM DESIGN – General                                                                                                                                                   |                                          |
| Objective – A safe system that works<br>Considerations in Hazardous Areas<br>Heating Loads<br>Temperature control<br>Circuit monitoring                                     | 12-13<br>14-15<br>16-17<br>18<br>19      |
| PRODUCTS AND PRODUCT SELECTION                                                                                                                                              |                                          |
| Heating Cables – Generic types                                                                                                                                              | 20-23                                    |
| Heating Cables – Selection Guide<br>Parallel, self-regulating<br>Parallel, constant power<br>Series resistance, Longline                                                    | 24-25<br>26-31<br>32-35<br>36-39         |
| Termination Components                                                                                                                                                      | 40-41                                    |
| Temperature Control – Selection Guide<br>Type I Temperature controllers - Maintaing above a minimum point<br>Type II Temperature controllers - Maintaing above a broad band | 42-43<br>44-45<br>46-47                  |

- Type II Temperature controllers Maintaing above a broad band
   Type III Temperature controllers Maintaing above a narrow band
- Circuit monitoring equipment

50-51

48-49





| INSTALLATIONS 5                                                |
|----------------------------------------------------------------|
| 52-59<br>60-61<br>62-63                                        |
| The Complete Design Tool 6                                     |
| 64-65                                                          |
| 66-67                                                          |
| 68-69                                                          |
| 70-79<br>70<br>71<br>72<br>73<br>74-75<br>76-77<br>78-79<br>80 |
| 81                                                             |
|                                                                |





## The Past, the Present, .....and the Future

#### The Past

When Heat Trace Limited was founded in 1974, electric heat tracing was in it's infancy – most heat tracing used steam as its heat source at that time.

In the three decades and more since, electric heat tracing has grown into an industry in its own right. Heat Trace Limited has played a prominent role in its growth throughout as a Leader in Innovation.

From the start, Heat Trace developed products and systems meeting Heat Trace's own corporate objectives of improving

#### safety, efficiency, reliability and performance.

The world's first parallel resistance cut-to-length Heat Tracer heating cable was patented, developed, and launched by Heat Trace Limited in 1975. It remains within our product range after more then 30 years bearing testament to the significance of this invention.

Heat Trace Limited were perhaps the first surface heating company to recognise the important link between control technology and the "safety, efficiency, reliability and performance" of heat tracing installations.

The company patented Powermatch, a self-regulating proportional controller that turns heater power up or down in response to changes in heat losses. Although launched almost 20 years ago, the benefits of proportional control to safety and efficiency have only recently been recognised on a global basis.

> Innovation-led technology resulted in Heat Trace becoming......

### The Heat Tracing Authority™

#### **The Present**

Heat Trace's Innovation Culture has culminated in its position as the Technology Leader within our Industry today. This position is demonstrated by:-

# 1. The largest and best range of self-regulating heating cables

- Highest continuous 'maintain' temperature (200°C)
- Highest continuous 'withstand' temperature (250°C)
- Widest voltage range (12 to 1000V)

Heat Trace's range of self-regulating heating cables cater for most heat tracing applications

#### 2. The highest temperature cut-to-length Heat Tracer in the world.

Heat Trace's patented mineral insulated, metal sheathed, type AHT heating cable can withstand 425°C continuously, and deliver up to 200W/m.

The AHT tracer can cater for virtually all applications outside the capability of the self-regulating tracer range.

# 3. EVOLUTION - the world's most advanced heat tracing Design Tool (See section 6).

Additionally, Heat Trace's range of electronic control and monitoring equipment extends from simple thermostats to microprocessor controls capable of integrating into overall plant SCADA and DCS systems.

Today, Heat Trace Limited is a global company providing complete heat tracing solutions. In addition to systems manufacture, services include consultancy, system design, installation and commissioning, project management, maintenance and training.

Heat Trace Limited has continued to be...

The Heat Tracing Authority™



The Past, the Present, .....and the Future

#### The Future

Heat Trace's emphasis on an Innovation Culture has resulted in an extensive and active Research and Development Department.

At the time that this brochure went to press, Heat Trace Limited had multiple patents/patent applications in the course of development, and an extensive Product Development project list, mainly involving semi-conductive polymer formulations.

These projects will result in many new and unique products and processes over the forthcoming decade ensuring Heat Trace Limited's position as the Technology Leader within its industry sector....

Heat Trace Limited will remain...

The Heat Tracing Authority™





# Heat Trace Limited ..... In the U.K.

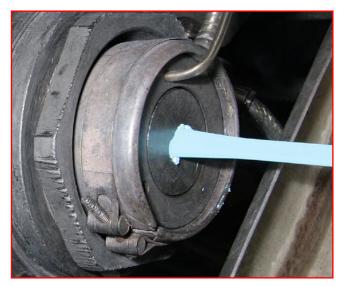
# Heat Trace Ltd has been manufacturing electrical heating cables in the U.K. for over 30 years.

The main manufacturing facility and headquarters of the company is at Helsby in the North West of England. This factory houses the main processing equipment for the manufacture of semi-conductive self-regulating heating cables; core compounding, heating matrix extrusion, and other more recognised standard cable making processes. The main item of capital equipment is the Electron Beam Unit – one of only two similar units in the U.K., and one of only a few in Europe.

The Helsby Headquarters handles sales to all countries (except the U.K.) around the world. Exports account for over 90% of Heat Trace sales.

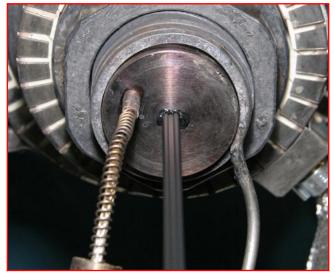
A second manufacturing facility is located at Bredbury, Stockport, some 56 km from the Helsby headquarters. The Bredbury complex has been a Heat Trace owned premises for 20 years, and constant power heating cables are made here.

Sales in the U.K. are processed from Heat Trace (UK) Limited located in Sunderland in the North East of England.








Heat Trace Limited









Heat Trace Limited in the UK



# INDUSTRIAL HEAT TRACING - An Introduction

#### Heat Tracing - What is it?

Heat Tracing (or Trace Heating, or Surface Heating) is the method of applying heat to a body, or to a product (liquid, powder, or gas) contained within a system (pipework, vessel or equipment) for storage or transportation, in order to avoid processing problems or difficulties.

Heat may be applied, for example, to:-

#### Liquids

- to prevent freezing
- to enable pumping by reducing the viscosity of the liquid
   Powders
- to eliminate condensation from the walls of equipment that could result in 'clogging' of the product
- 🛑 Gases
- to prevent hydration due to a drop in gas pressure across pipework fittings such as valves

#### Heat Tracing – What is its purpose?

Heat Tracing is usually provided to maintain a product or equipment at a temperature that will prevent processing problems. For example :-

- Above 5°C to freeze protect water or aqueous solutions
- Above, for example, 50°C to prevent oil from becoming too viscous to pump
- To maintain surfaces above a dew point temperature below which condensation could form on a surface and potentially create 'clogging' of a powder.

Heat Tracing may also be required to heat raise products or equipment from cold to the required maintain temperature. For example :-

- A pipeline is used infrequently to deliver fuel oil from an off-loading berth into a plant area. In such a case, the pipeline and its contents may be raised from the ambient temperature to the fuel oil pumping temperature over a period of, for example, 24 hours prior to the delivery of the fuel oil.

#### Heat Tracing - The Need

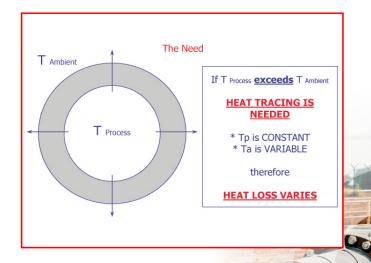
Whenever the contents of a pipe or equipment are maintained at a process temperature exceeding the ambient temperature, there will be a flow of heat from the product or equipment through the thermal insulation to the external air, and *the rate of heat loss varies directly with changes in ambient temperature.* 

In order to prevent the temperature of the product from falling below its required level, this *variable* heat loss must be compensated for by heat tracing the pipeline or equipment.



#### Heat Tracing – Steam or Electric?

The energy source for heat tracing is most commonly electricity or steam.


When excess steam is available, it may, incorrectly, be perceived to be 'free'. But steam tracing is rarely controlled and may typically deliver six times the quantity of heat required to provide freeze protection to a pipe. Additionally, it has high running and maintenance costs due to leaks from steam traps.

In such circumstances, often the most efficient course of action is to use the excess steam to generate electricity, which is then used as the energy source for a controlled and highly efficient electric heat tracing system.

#### Heat Tracing – The System

#### An electric heat tracing system often comprises:-

- heating cable(s) together with termination components
- ancillary items such as junction boxes and fixing materials
- temperature control devices (sometimes / optional)
- monitoring / alarm facilities (sometimes / optional)
- power distribution / circuit protection facilities





## INDUSTRIAL HEAT TRACING – An Introduction

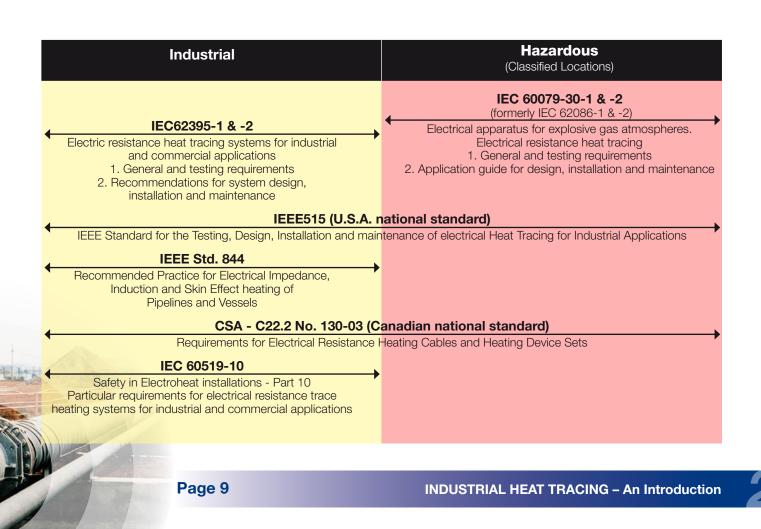
#### Heat Tracing – Safe Practice

A heat tracing installation should provide the highest appropriate levels of Safety. This is mainly provided for by:-

- ensuring temperature safety
- over-current circuit protection
- earth-leakage protection

This is discussed in more detail in SECTION 3 – System Design.

#### Heat Tracing – Applicable Standards


Electric heat tracing is governed by a number of International and National Standards covering Industrial (Safe) and Industrial (Hazardous) locations. A list of the most important standards, to which many of Heat Trace's products are approved, are shown in the table below

Although Heat Trace can design and supply equipment approved to most national standards, for purposes of clarity, this document focuses on the standards developed especially for Electric heat tracing:-



- IEC62395 Electric Heat Tracing for Safe Industrial locations and
- IEC60079-30 Electric Heat Tracing for Hazardous locations (formerly IEC62086)

This is because these are the most recent publications, and are truly international, the International Electro-technical Commission comprising most industrialised nations from all continents.





# Typical Applications / market sectors

#### **Bakery equipment**

- heating fuel oil pipes to the ovens
- bread fat heating
- anti-condensation for flour storage
- heating glucose and sucrose products

#### Brewing

- heating malt, glucose and water pipes and tanks
- fuel oil systems

#### Chemicals

- heating numerous viscous liquids and/or gases
- e research projects
- many refinery applications

#### **Ceramic industry**

- heating fuel oil
- paint and varnish heating

#### **Chocolate and sweets**

- heating chocolate in pipes and vats
- heating chocolate in road tankers
- heating liquid sugars
- heating cocoa butter and fats

#### **Detergent and soaps**

- heating various viscous liquids
- e general frost protection

#### Medicine

 many applications especially in the pharmaceutical industry where waxes, tallows and stearates are used.

#### **Non-ferrous metal industries**

- fuel oil heating and frost protection
- Oil industry
- fuel oil heating
- Iubrication oil heating
- grease line heating
- oil additives heating
- many refinery processes require tracing

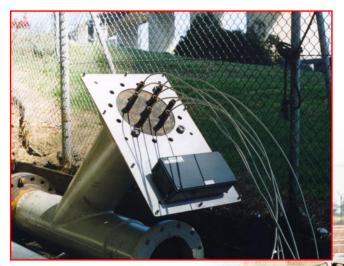
#### **Drying and cleaning**

- heating fuel oil
- dyestuffs manufacture

#### **Electric motors**

- curing glass-fibre banding tape
- heating commutators during manufacture
- anti-condensation heating

#### **Electric transformers**


- curing glass-fibre banding tapes
- drying out oil-filled transformers
- frost protection of water-filled transformers



Tank base heating



#### **Pipe tracing**



Internal pipe tracing





Tank Wall de-icing



Tank heating



Typical Applications / market sectors

#### **Food processing**

- heating many food process materials, eg malt, sugars, molasses, sauces, honeys, jams,
- Chocolates, waxes, fats, cooking oils
- keeping powdered food dry
- heating storage tanks
- tracing refrigeration rooms

#### **Fertiliser industry**

tracing liquids used in manufacturing inorganic fertiliser

#### **Power generation stations**

- boron water
- carbon dioxide
- fuel oil
- caustic solutions
- instrument lines
- frost protection
- pre-heating steam lines to prevent stress
- Precipitator fly ash hoppers and silos
   flue gas desulphurisation processes, ie frost protection and liquid sulphur temperature maintenance

#### **Road construction**

- heating asphalt (bituminous tar) and pitch in road stone plants
   fuel oil
- frost protection of sand and aggregate in storage hoppers

#### Iron and steel

- fuel oil systems
- frost protection
- grease pipelines
- hopper heating

#### Printing

inks and dyes during manufacture and storage

#### **Plastics industry**

- curing thermosetting resins
- e accelerated curing of glass fibre

#### Paints

 paints and varnishes during manufacture and in paint spray applications

#### Refrigeration

- heating drain lines and drip trays
- heating refrigerator doors
- anti-frost heave of concrete floors

#### Rubber

curing rubber sections and fabrications

#### Sprinkler & fire system manufacture

frost protection of water-filled lines

#### **Tar distilleries**

- heating bituminous materials
- heating road tankers

**Buried pipeline tracing** 



## Objective - a Safe system that works

A heat tracing installation should provide the highest appropriate levels of Safety. This is mainly provided for by:-

- ensuring temperature safety
- over-current circuit protection
- earth-leakage protection

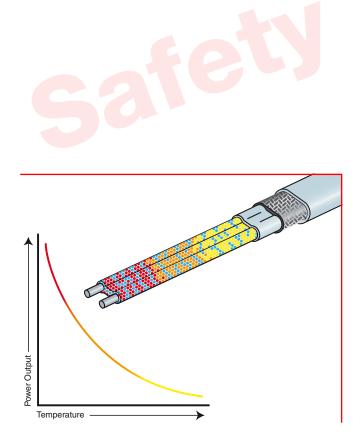
Temperature safety is ensured by preventing the surface of the heat tracer from exceeding the limiting temperature. This limiting temperature may be the maximum rating of the tracer itself, or, for example, the Temperature Classification where the installation is within a hazardous area.

#### Ensuring temperature safety

Temperature safety may be provided in a number of ways. The choice open to a specifier, in descending order of preference are:-

#### - Inherently temperature-safe heat tracers.

Many self-regulating tracers are inherently temperature safe, their power output reducing with rising temperature such that limiting temperatures e.g. Temperature Classification or temperature withstand of the heater, cannot be exceeded due to the heat produced by the tracer. *Inherently temperature-safe heat tracers therefore provide the highest level of temperature safety.* 


#### Stabilised Design

Here, a calculation is made to ensure that, under the worst case conditions, a tracer always operates at below the limiting temperature, without the need for external temperature control. Where inherently temperature-safe heat tracers are not available, stabilised design provides the favoured form of temperature safety

#### - Temperature control

Where a stabilised design cannot be assured, it is then necessary to employ temperature control. Here the safety of the system is reliant on the correct functioning of the controller and the correct location and operation of the temperature sensor. *This is therefore the least safe option.* 

Specifiers should guard against being offered such designs, which may have capital benefits but with attendant safety risks.









# Objective - a Safe system that works

#### Circuit Over-current Protection

Each heating circuit should be provided with over-current protection. Maximum safety is provided by a circuit breaker having a rating close to the operating current of the circuit.

Some self-regulating heat tracers exhibit a high in-rush current on start up from cold and require the use of a highly rated circuit breaker with a delayed breaker action. This reduces the level of safety provided.

Safety is maximised when Heat Trace Limited self-regulating heat tracers are specified and circuits are designed to incorporate the patented SSD SoftStart device. The SSD reduces in-rush currents by up to 50% and allows the use of circuit breakers having lower ratings more closely matched to the operating current.

#### Circuit Earth Leakage Protection

Each heating circuit should be provided with earth leakage protection.

The residual current device should normally have a sensitivity of 30mA and operate within 30ms. Exceptionally, for example where long heating circuits apply, it may be necessary to increase the sensitivity level to avoid 'nuisance' tripping.





# Considerations in Hazardous Areas

# Design and equipment selection for use in hazardous areas will be influenced by:-

- the area classification
- the gas group
- the temperature classification and equipment selected providing an appropriate type of protection

As stated above, this document focuses on the international standards developed especially for electric heat tracing, IEC62395 – for Safe Industrial locations and IEC60079-30 – for Hazardous locations.

#### **Area Classification**

The probability of explosive conditions being present is defined by zone classification

- Zone 0 may have explosive gas-air mixtures present continuously or for long periods. Heat tracing is rarely, if ever, used in Zone 0 areas.
- Zone 1 may have explosive gas-air mixtures present in normal operation.
- **Zone 2** may have explosive gas-air mixtures present only under abnormal conditions.

#### **Gas Groups**

Gas groups relevant to heat tracing in hazardous locations are:-

- IIA Acetone, benzene, butane, ethane, methane, propane, etc.
- **IIB** Ethylene, town gas etc.
- IIC Acetylene, hydrogen







# Considerations in Hazardous Areas

#### **Temperature Classification**

The maximum surface temperature of the heater must be kept below the auto ignition temperature of the explosive gas or vapour mixtures which could be present. The classifications are:-

| T-Class     | Maximum admissible<br>surface temp °C |
|-------------|---------------------------------------|
| T1 – 450°C. | 440°C                                 |
| T2 – 300°C. | 290°C                                 |
| T3 – 200°C. | 195°C                                 |
| T4 – 135°C. | 130°C                                 |
| T5 – 100°C. | 95°C                                  |
| T6 − 85°C.  | 80°C                                  |

In reality, most gases encountered will have an ignition temperature of T1 or T2. However, it will be recognised that the lower the operating temperature of the heater, the safer the system will be.

For this reason, self-regulating heaters which are inherently safe should be the preferred safety option. When this is not possible, a calculated stabilised design is preferable to a system that relies on temperature controls for the safety of the system.

#### **Types of Protection**

As non-sparking devices, most heaters are likely to be approved to the concept 'e' – increased safety (EExe).

Sparking devices such as thermostats or circuit breakers are most commonly approved to the concept 'd' – flameproof (EExd), although concepts 'i' – intrinsic safety (EExi), and 'p' – pressurised apparatus (EExp) are also sometimes appropriate.

Sometimes, distribution boards and control panels can be located outside the hazardous area to avoid the need for the additional costly protection.



Page 15

**SYSTEM DESIGN – GENERAL** 



# Heating Loads - Pipelines

Heat Trace's Evolution design software is able to automatically calculate the appropriate heating load in order to compensate for heat losses from a pipe, vessel, and line equipment, or to heat raise the temperature of the equipment and its contents.

However, the following is a simplistic method for calculation of heating loads for pipes and vessels.

It should be stressed that the heat losses from pipeline fittings, such as valves, flanges, strainers, filters, pumps, are often significant, accounting for typically an additional 25% of the pipework heating load requirements. Also, pipe supports, which are rarely detailed on drawings, can also account for significant heat losses unless the supports are thermally insulated.

#### Heat loss compensation for pipelines

As its name implies, this form of heating is used to balance or compensate for heat losses from a pipeline to the surrounding atmosphere. The following method may be used to calculate the amount of heat required:

- 1 Table 1a select loss factor for pipe size and insulation thickness.
- 2 Table 1 b multiply the selected loss factor by the 'K' value of insulation used.
- 3 Multiply the resultant from Tables 1a and 1b by the temperature difference between lowest ambient and required temp ( $\Delta t^{\circ}$ C).
- 4 Multiply by an appropriate safety factor typically 1.2
- 5 The resultant number x is the heating load in watts/ metre of pipe

It should be noted that this heating load is only needed when the ambient temperature is at it's minimum design level. At all other times the heating load will be greater than necessary. **The excess heating load is normally accommodated by the temperature control system.** 



#### **Raising temperature of pipelines**

In the majority of cases, it is more economic to maintain the heating over short shutdown periods, eg. weekends, than to make provision for heating up from cold. Where it is essential to provide sufficient heat for warming up in addition to heat loss compensation, the time allowed for warming up should be at least 12-24 hours, as shorter periods normally involve inconveniently high loadings.

Heat required for warming up can be calculated as follows:

#### Formula 1

 $W= \frac{(P \times S + C \times Q) \times \Delta T}{E \times H \times 3600}$  W/m

where W = heating required in watts/metre

- P = weight of pipework in kg/m
  - S = specific heat of pipework in J/kg°C
  - C = weight of contents in kg/m
  - Q = specific heat of contents in J/kg°C
  - $\Delta T$  = temperature rise °C
  - H = time allowed in hours
  - E = efficiency factor, use 0.73 but may vary

This figure must be added to the heat loss compensation calculated previously. It is not necessary to work on the full temperature because, during the heating-up period, the pipe temperature will be below the final temperature, therefore the following equation should be applied:

# Total Load = heating up load + 2/3 steady loss at final temperature

#### Table 1a

| Pipe                                                                                                                                         | Pipe                                                                                                                               |                                                           | Insulation thickness                                                                                                                              |                                                                                                                                                 |                                                                                                                                               |                                                                                                                                      |                                                                                                             |                                                                            |                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------|
| nominal                                                                                                                                      | O.D                                                                                                                                | 12                                                        | 25                                                                                                                                                | 37                                                                                                                                              | 50                                                                                                                                            | 75                                                                                                                                   | 100                                                                                                         | 125                                                                        | 150mm                                                             |
| bore                                                                                                                                         |                                                                                                                                    | <sup>1</sup> / <sub>2</sub>                               | 1                                                                                                                                                 | 1 <sup>1</sup> /2                                                                                                                               | 2                                                                                                                                             | 3                                                                                                                                    | 4                                                                                                           | 5                                                                          | 6 in                                                              |
| in                                                                                                                                           | mm                                                                                                                                 |                                                           |                                                                                                                                                   | No                                                                                                                                              | rmalise                                                                                                                                       | d loss fa                                                                                                                            | actor                                                                                                       |                                                                            |                                                                   |
| $ \begin{array}{c} 1/2 \\ 3/4 \\ 1 \\ 1^{1/2} \\ 2 \\ 2^{1/2} \\ 3 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 24 \\ \end{array} $ | 21.35<br>26.7<br>33.4<br>48.3<br>60.3<br>73.05<br>88.9<br>114.3<br>169.3<br>219.1<br>273<br>324<br>355<br>406<br>457<br>508<br>609 | 8.01<br>9.39<br>11.34<br>14.86<br>17.88<br>21.05<br>25.00 | 5.16<br>5.89<br>6.91<br>8.74<br>10.28<br>11.89<br>13.90<br>17.08<br>23.82<br>30.13<br>36.82<br>43.12<br>47.05<br>53.35<br>59.64<br>65.92<br>78.50 | 4.13<br>4.65<br>5.36<br>6.63<br>7.69<br>8.79<br>10.15<br>12.30<br>16.82<br>21.04<br>25.53<br>29.73<br>32.36<br>36.56<br>40.76<br>44.96<br>53.35 | 3.58<br>4.00<br>4.56<br>5.54<br>6.36<br>7.21<br>8.24<br>9.88<br>13.30<br>16.50<br>19.86<br>23.03<br>25.00<br>28.16<br>31.31<br>34.46<br>40.76 | 3.30<br>3.71<br>4.41<br>4.98<br>5.57<br>6.29<br>7.42<br>9.74<br>11.89<br>14.17<br>16.29<br>17.60<br>19.73<br>21.84<br>23.95<br>28.16 | 4.26<br>4.72<br>5.28<br>6.15<br>7.93<br>9.57<br>11.29<br>12.90<br>13.90<br>15.50<br>17.08<br>18.67<br>21.84 | 6.83<br>8.16<br>9.55<br>10.85<br>11.66<br>12.90<br>14.22<br>15.49<br>18.04 | 7.20<br>8.38<br>9.47<br>10.15<br>11.20<br>12.30<br>13.37<br>15.50 |
| 30                                                                                                                                           | 762                                                                                                                                |                                                           | 97.36                                                                                                                                             | 65.92                                                                                                                                           | 50.20                                                                                                                                         | 34.60                                                                                                                                | 26.58                                                                                                       | 21.84                                                                      | 18.60                                                             |

SYSTEM DESIGN – GENERAL



# Heating Loads - Tanks & Vessels

#### Heat loss compensation for tanks, vessels & hoppers

Similarly the design criteria for calculating heat loss compensating and/or raising and maintaining temperature associated with tanks, vessels, or hoppers are as follows:

Formula 2a (for flat surfaces)

 $Loading required = \underbrace{A \times K \times (T_1 - T_2)}_{E \times t} watts$ 

2b (for cylindrical surfaces)

Loading required =  $2.72 \times K \times L \times (T_1 - T_2)$  watts

 $E \times log_{10}$  (D/d)

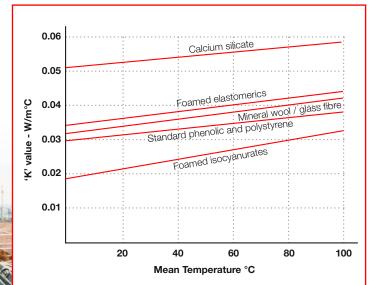
where A = total surface area of tank, vessel, etc to be heated in square metres (m<sup>2</sup>)

- K = thermal conductivity of the insulation in W/m°C
- T<sub>1</sub> = temperature to be maintained °C
- T<sub>2</sub> = min ambient temperature °C
- $\bar{t}$  = thermal insulation thickness in mm
- L = length of surface
- D = diameter across insulation
- d = outside diameter of pipe
- E = efficiency factor, use 0.73 but may vary

#### Raising temperature of tanks, vessels and hoppers

#### Formula 3

Kilowatt loading required =


mass(kg) x sp heat (J/kg°C) x temp rise °C kW

E(0.73) x 1000 x hours x 3600

After raising the contents to the required level, it will be necessary to allow for heat losses as in FORMULAE 2a or 2b. Therefore the total heat required = Amount of heat to raise temperature of contents +  $^{2}/_{3}$  of amount of heat to maintain temperature.

Types of thermal insulation used for pipelines and vessels together with thermal conductivity, ie 'K' factor, are shown in Table 1b.

#### Table 1b







# Temperature Control

Temperature control may be provided to a system in order to:-

- Ensure temperature safety or
- Provide process temperature accuracy

#### Ensuring temperature safety

As previously stated, it is recommended that the provision of temperature controls to ensure that limiting temperatures are not exceeded should only be considered when the use of inherently safe heaters or a stabilised design is not possible.

Where this form of temperature safety cannot be avoided, it is necessary that:-

- In safe areas, a controller provided for process control may also act as over temperature controller
- In Zone 2 areas, two controllers, process temperature plus over-temperature are required, and
- In Zone 1 areas, two controllers, process temperature plus over-temperature are required, where the over-temperature device is a manually re-settable lock-out type, unless a monitored alarm is provided.

It is important that the sensor of the over-temperature controller is fitted to the pipe or workpiece to limit the pipe to a temperature level at which the heater will not exceed the maximum limiting temperature.

#### Warning

It is legal to fit the sensor of the over-temperature controller to the surface of the heater itself. However, this is a practice that Heat Trace Ltd. does not recommend because:-

- It will rarely be known to be sensing the hottest point of the heater (which is likely to be where the heater is out of contact with the equipment) and
- When the sensor is removed, for example during maintenance work, it cannot be guaranteed to be returned to the hottest part of the heater

The practice of fitting a temperature sensor to the heater to ensure temperature safety is dangerous!



#### **Process temperature accuracy**

# The IEC electric heat tracing standards define 3 levels of process temperature accuracy

#### Type I

A Type I process is one in which the temperature should be maintained **above a minimum point**. No temperature control or simple ambient sensing control may be acceptable. Large blocks of power may be controlled by means of a single device.

#### Type II

A Type II process is one in which the temperature should be maintained *within a moderate band*.

#### Type III

A Type III process is one in which the temperature should be controlled **within a narrow band**. Type III systems require strict adherence to flow patterns if surface sensing controls are utilised.



# Circuit Monitoring

#### **Circuit Monitoring**

If failure of a heater can result in a safety or process problem, then the heat tracing system may be considered to be critical to the total process. The temperature control and circuit monitoring requirements of an application are defined by the IEC Electric Heat Tracing standards according to the temperature control types as previously described, together with the circuit monitoring criticality as described in the table below.

|                                       | Desired accuracy of<br>process temperature control |                   |                    |  |  |
|---------------------------------------|----------------------------------------------------|-------------------|--------------------|--|--|
| Is heat tracing a                     | Maintain Maintain Maintair                         |                   |                    |  |  |
| critical component<br>of the process? | above a<br>minimum                                 | within a moderate | within a<br>narrow |  |  |
| of the process.                       |                                                    |                   | band Type III      |  |  |
| Yes = Critical (C)                    | C – I                                              | C – II            | C – III            |  |  |
| No = Non-critical (NC)                | NC – I                                             | NC – II           | NC – III           |  |  |

#### **Process types**

When heat tracing is critical to the process, circuit monitoring for correct operation is recommended. Malfunction alarms, and back-up (redundant) heat tracers may also be considered. Spare or back-up controllers can be specified to be automatically activated in the event of a fault being indicated by the monitoring / alarm system. This is sometimes known as "redundancy". Back-up heat tracers will maintain availability and may allow maintenance or repairs to be performed without a process shutdown.





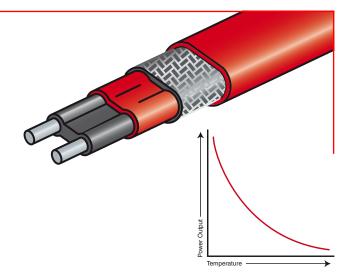


There are four generic types of heat tracer

- Parallel Self-Regulating
- Parallel Constant Power

#### **Parallel Self-Regulating**

Self-Regulating (or self-limiting) tracers are most popular, as they can conveniently be cut-to-length and are often inherently temperature safe, due to the positive temperature coefficient heating matrix. Thus temperature control is not usually needed to provide temperature safety.


Until recently, their availability for only low or moderate temperatures limited their use. Now though, Heat Trace Ltd. have pioneered new generation semi-conductive FSU tracers able to withstand 200°C energised, and 250°C power off. So now, Self-Regulating tracers can fulfil 80-90% of all applications within industrial heat tracing - but currently only from Heat Trace!

Ever since the introduction of self-regulating tracers, the high currents on start up from cold have created a problem requiring the need for larger than necessary feed cables and switchgear. Additionally, safety was compromised, as circuit protection had to be sized in excess of operating currents. Now however, Heat Trace has made significant reductions in start currents, thereby improving safety, and reducing distribution costs.

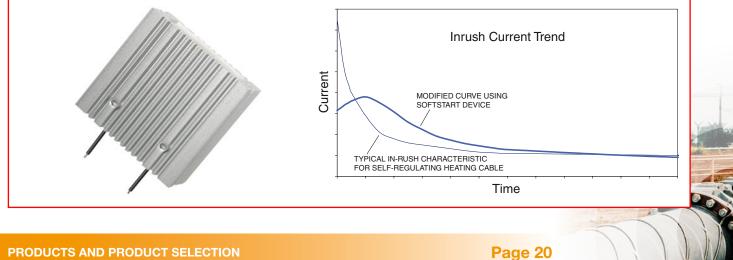
A patented SoftStart device (see illustrations below) having NTC (negative temperature coefficient) characteristics negates the PTC (positive temperature coefficient) of the heating matrix. Start currents are reduced by about 50% (see Figure below). This is further aided by a patented processing method known as Directional Conductivity. Here the conductive particles within the heating matrix are dispersed and distributed in such a way as to control the direction of current flow.

Self-Regulating tracers are typically limited in circuit length to 100 or 200 metres, and so are used mainly for in-plant applications

Series Resistance Skin-Trace



#### Heat Trace's range of self regulating heat tracers


Heat Trace Limited is able to produce self-regulating tracers within the following range

12 - 1000 Volts Up to 250°C withstand temperature Up to 100 W/m

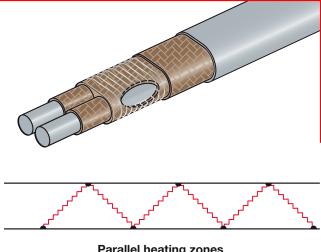
Datasheets of some of the standard Heat Trace range are provided, pages 26 - 31 inclusive

#### **Temperature ranges**

| Low  | Medium | High |
|------|--------|------|
| FSM  | FSE    | FSS  |
| FSLe | FSP    | FSU  |
| FSR  |        |      |






#### **Parallel Constant Power**

Parallel Constant Power (zonal) tracers can be conveniently cut-to-length, but are less popular than Self-Regulating heaters, because they often require thermostatic control to ensure temperature safety, (although sometimes a calculated temperature-safe stabilised design is possible).

Until recently, all constant power tracers were polymeric, and so were limited in temperature capability. However, Heat Trace has patented a parallel resistance, convenient cut-tolength metal sheathed, mineral insulated (MI) heater having a withstand temperature of 425 deg. C. This type AHT product caters for most applications that the new high temperature Self-Regulating heaters still can't handle. Thus cut-to-length parallel tracers are now available for virtually all heat tracing applications.

This is particularly beneficial in the case of instrument lines, the lengths of which are usually not known at the design stage of a project, and which are site run according to convenience.

Parallel Constant Power tracers are typically limited in circuit length to 100 or 200 metres, and so are used mainly for inplant applications



**Parallel heating zones** 

#### Heat Trace's range of Parallel Constant Power heat tracers

Heat Trace Limited is able to produce tracers within the following limitations

Up to 425°C withstand temperature Up to 200 W/m

Datasheets of some of the standard Heat Trace range are provided, pages 32 - 35 inclusive

#### **Temperature ranges**

| Medium | High |
|--------|------|
| MTF    | PHT  |
| EMTF   | AHT  |





#### **Series Resistance Tracers**

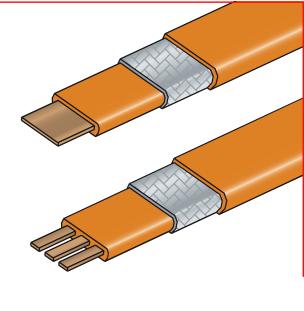
Series Resistance Tracers have to be individually designed into particular length/load configurations and so are not so versatile as parallel types.

However, an advantage is that long circuit lengths are possible – typically 3 phase '**Longline**' tracers require electric supply points only at multi-kilometre intervals. So the major outlet for series heaters is long pipelines.

Traditionally, metal sheathed, mineral insulated (MI) series cables were used when process temperatures exceeded the capability of the more convenient polymeric parallel tracers. However, the introduction of Heat Trace's cut-to-length parallel type **AHT** MI tracer virtually eliminates the need for series MI tracers which require skill to terminate and are costly.

Series Resistance Tracers often require temperature controls to ensure temperature safety.

#### Heat Trace's range of series 'Longline' heat tracers


Heat Trace Limited is able to produce tracers within the following limitations

Up to 1000 Volts 3 phase Up to 230°C withstand temperature Up to 60 W/m

Datasheets of some of the standard Heat Trace range are provided, pages 36 - 39 inclusive

#### **Temperature ranges**

| Low   | Medium |
|-------|--------|
| HTP3F | HTS3F  |
| HTP1F | HTS1F  |

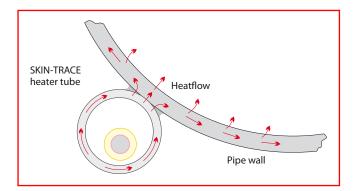




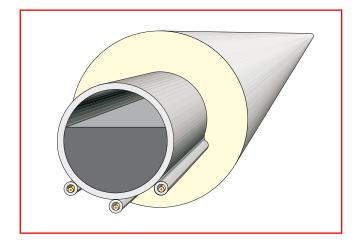
**Heating Circuit Configuration** 






#### **Skin-Trace**

Skin-Trace is induction-resistive heat tracing based on skin and proximity effects of an AC current within a ferromagnetic tube.


The heating element comprises a carbon steel tube into which is inserted an insulated non-magnetic conductor. The conductor and the steel tube are connected together at one end. At the other end an AC voltage is applied between the conductor and the tube. The relationship of conductor/tube sizes and voltage determines the output power developed.

The skin effect of the magnetic tube results in the current being concentrated towards the tube's inner surface, the potential to the outside being zero.

**Skin-Trace's** advantage is that extremely long circuit lengths are possible – typically a pipeline of up to 30km may be heated from a single electric supply point. So Skin-Trace is most appropriate for the heating of cross-country pipelines.



- Up to 30 km lines heated from one supply point
- The most effective method for heating long distance pipelines
- Robust and reliable system with outputs up to 120W/m
- Suitable for up to 200°C operating temperature
- Suitable for use in hazardous areas



Depending on the heating power required and the pipeline length, SKIN-TRACE may consist of either one, two, or three, heater tubes (see image above).


#### OPERATING TEMPERATURE -40°C to +200°C

#### POWER SUPPLY

up to 3kV AC 50 or 60 Hz

#### POWER OUTPUT

Rated power output of one heating element



#### Rated Power output of one heater tube, W/m

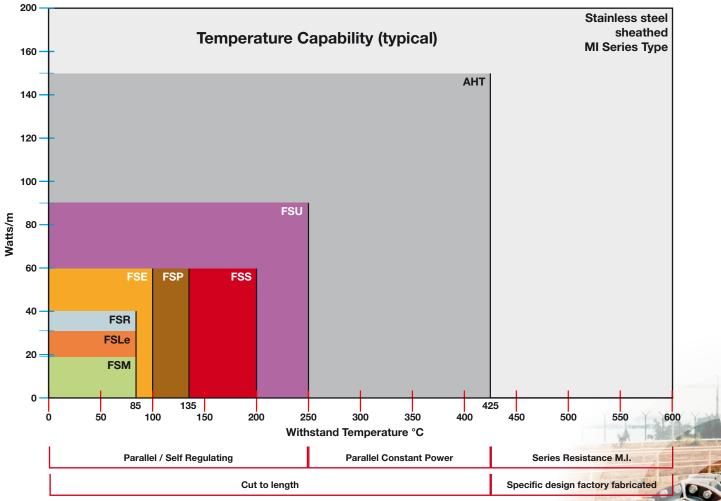
#### Heater Tube Dimension





# Heating Cables – Selection Guide

#### In-plant areas


Heat tracers for in-plant areas are usually selected according to the maximum temperature to which the tracer will be subjected, and the power output required from the tracer.

The following table shows the relationship between temperature withstand and power output for various self-regulating, constant power, and series MI tracers. It may be seen that self-regulating tracers which can be conveniently cut-to-length and which are usually temperature safe, are available for exposure temperatures up to 250°C.

**AHT** constant power tracers can cater for higher exposure temperatures up to 425°C and high power outputs up to 200W/m.

Only exceptionally is it necessary to employ series MI cables, which must be specifically designed for a particular length and output.

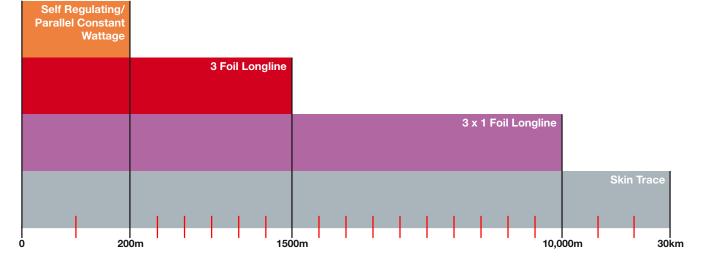






# Heating Cables – Selection Guide

#### Transfer and long pipe runs


Heat tracers for long pipelines are usually selected according to the pipe length, and the ability of the chosen tracer to minimise the number of electrical feed points, and hence distribution costs.

The following table shows that, in ascending order of maximum circuit length, tracer choice is likely to be:-

- a) parallel tracers (self-regulating or constant power)
- b) 3 foil 'Longline' tracers
- c) single foil 'Longline' tracers
- d) Skin-Trace system

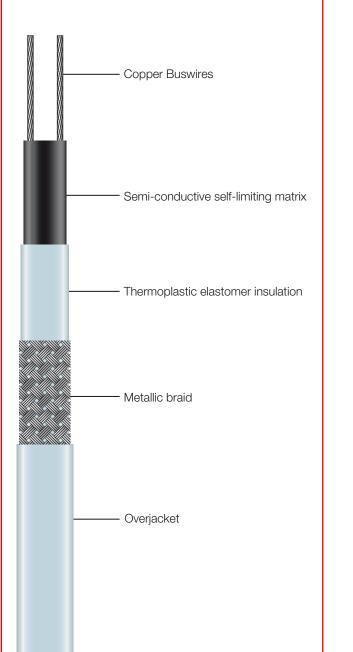


## **Circuit Length (typical) - Metres**





**FREEZSTOP MICRO** 


FSM withstand temperatures - 65°C

# Product Data - Parallel Self-Regulating Heaters

#### FREEZSTOP - Low Temperature Range Self-Regulating Heating Cables for exposure temperatures up to 85°C

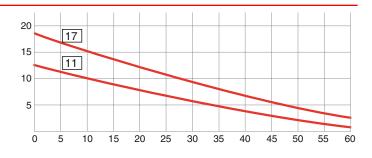
A versatile range of industrial grade self-regulating heating cables for freeze protection and **low** process temperature maintenance duties. All cables are available with metallic braid, braid with thermoplastic jacket, or braid with fluoropolymer jacket. Approved for use in both safe and hazardous areas. Available for voltages 100 – 120VAC and 208 – 277VAC.

# energised / 85°C un-energised.

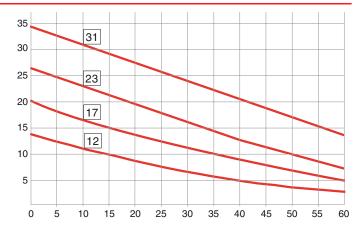


**FREEZSTOP REGULAR** FSR withstand temperatures - 85°C energised / 85°C un-energised.

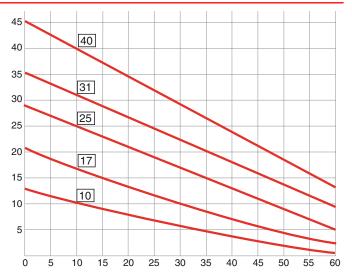



- Use Type D motor rated circuit breakers
- Maximum circuit lengths are based on a start up temperature of 10°C
- If circuits are started up when heaters are below 10°C, circuit breakers may trip. If this happens, re-energise the circuits until the heaters warm up, and circuit breakers remain switched on
- For maximum circuit lengths for start up temperatures below 10°C, please consult Heat Trace Limited
- THERMAL RATINGS Nominal power output at 115V or 230V when installed on insulated metal pipes.






Product Data - Parallel Self-regulating Heaters


| MICRO - FSM Specification Data<br>MAXIMUM LENGTH (m) vs. CIRCUIT BREAKER SIZE<br>Cat 115V I 230V |    |     |    |     |  |  |
|--------------------------------------------------------------------------------------------------|----|-----|----|-----|--|--|
| Ref                                                                                              | 6A | 16A | 6A | 16A |  |  |
| 11FSM                                                                                            | 38 | 64  | 76 | 128 |  |  |
| 17FSM                                                                                            | 27 | 51  | 54 | 102 |  |  |



| LITE - FSLe Specification Data<br>MAXIMUM LENGTH (m) vs. CIRCUIT BREAKER SIZE |    |             |     |  |    |             |     |
|-------------------------------------------------------------------------------|----|-------------|-----|--|----|-------------|-----|
| Cat<br>Ref                                                                    | 6A | 115V<br>16A | 20A |  | 6A | 230V<br>16A | 20A |
| 12FSLe                                                                        | 38 | 90          | -   |  | 78 | 180         | -   |
| 17FSLe                                                                        | 31 | 73          | -   |  | 62 | 146         | -   |
| 23FSLe                                                                        | 23 | 62          | -   |  | 46 | 124         | -   |
| 31FSLe                                                                        | 17 | 46          | 51  |  | 34 | 92          | 102 |

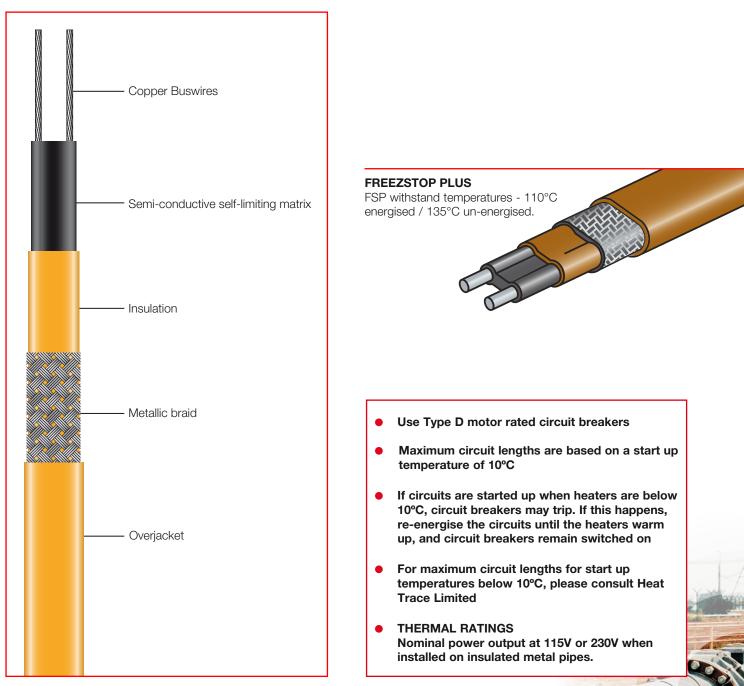


| REGULAR - FSRSpecification DataMAXIMUM LENGTH (m) vs. CIRCUIT BREAKER SIZECat115VCat115VRef16A20A25A16A20A |     |     |     |     |     | IZE<br>25A |
|------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|------------|
| ner                                                                                                        | IVA | LVA | LUA | 104 | LUA | LUA        |
| 10FSR                                                                                                      | 99  | -   | -   | 198 | -   | -          |
| 17FSR                                                                                                      | 77  | -   | -   | 154 | -   | -          |
| 25FSR                                                                                                      | 62  | -   | -   | 124 | -   | -          |
| 31FSR                                                                                                      | 37  | 46  | 55  | 74  | 92  | 110        |
| 40FSR                                                                                                      | 28  | 35  | 44  | 56  | 70  | 88         |



FULL TECHNICAL DATA SHEETS ARE AVAILABLE ON OUR WEBSITE FOR ALL PRODUCTS www.heat-trace.com

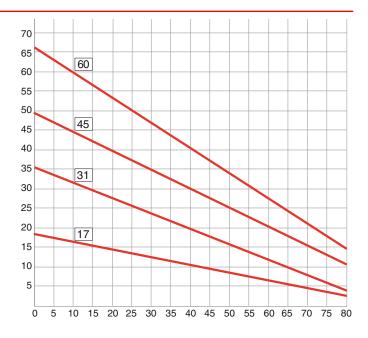



# Product Data - Parallel Self-Regulating Heaters

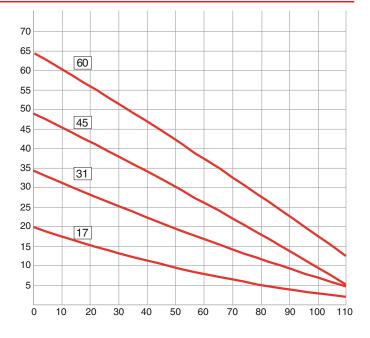
#### **FREEZSTOP - Medium Temperature Range** Self-Regulating Heating Cables for exposure temperatures up to 135°C

A versatile range of industrial grade self-regulating heating cables for freeze protection and **medium** process temperature maintenance duties. All cables are available with metallic braid, braid and thermoplastic jacket, or braid and fluoropolymer jacket. Approved for use in both safe and hazardous areas. Available for voltages 100 – 120VAC and 208 – 277VAC.

FREEZSTOP EXTRA


FSE withstand temperatures - 100°C energised / 100°C un-energised.






Product Data - Parallel Self-regulating Heaters

| EXTRA - F<br>MAXIMUM<br>Cat<br>Ref |    | •  |    | Data<br>RCUIT BREAKER SIZE<br>230V<br>16A 20A 25A |
|------------------------------------|----|----|----|---------------------------------------------------|
| 17FSE                              | 60 | 74 | -  | 120 148 -                                         |
| 31FSE                              | 41 | 55 | -  | 82 104 110                                        |
| 45FSEw                             | 31 | 38 | 48 | 62 76 96                                          |
| 60FSEw                             | 26 | 33 | 41 | 52 66 82                                          |



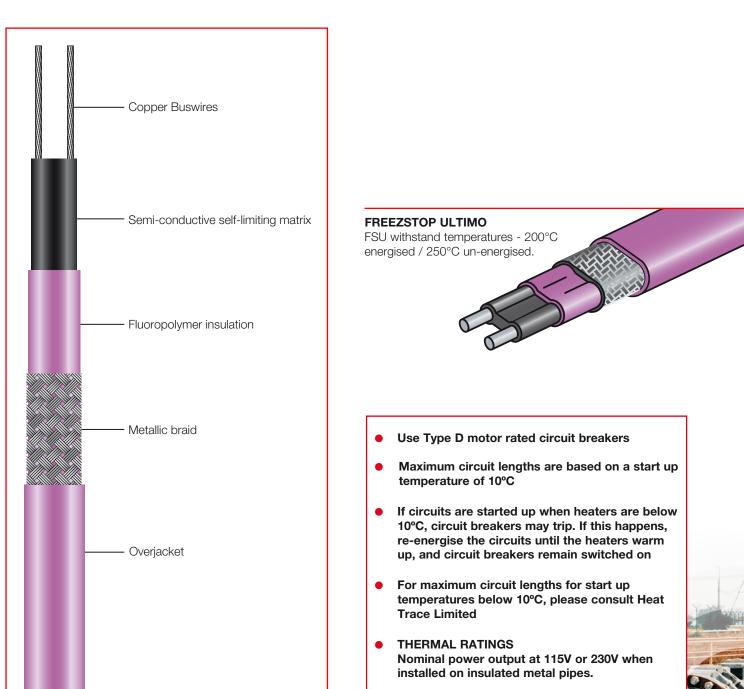
| Cat       | -   | TH (m)<br>115V |     | ta<br>CUIT BREAKER SIZE<br>230V<br>16A 20A 25A |  |  |  |  |  |
|-----------|-----|----------------|-----|------------------------------------------------|--|--|--|--|--|
| Ref       | 16A | 20A            | 25A | 16A 20A 25A                                    |  |  |  |  |  |
| 17FSP(t)  | 77  | -              | -   | 154                                            |  |  |  |  |  |
| 31FSP(t)  | 51  | 55             | -   | 102 110 -                                      |  |  |  |  |  |
| 45FSP(t)w | 30  | 38             | 48  | 60 76 96                                       |  |  |  |  |  |
| 60FSP(t)w | 26  | 33             | 41  | 52 66 82                                       |  |  |  |  |  |





FULL TECHNICAL DATA SHEETS ARE AVAILABLE ON OUR WEBSITE FOR ALL PRODUCTS www.heat-trace.com



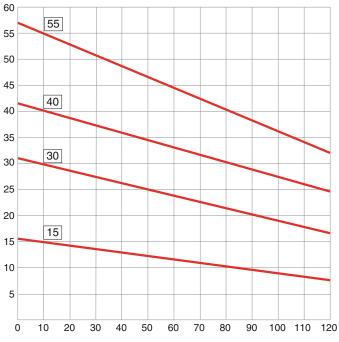

# Product Data - Parallel Self-Regulating Heaters

#### **FREEZSTOP - High Temperature Range** Self-Regulating Heating Cables for exposure temperatures up to 250°C

A versatile range of industrial grade self-regulating heating cables for freeze protection and **high** process temperature maintenance duties. All cables are available with metallic braid, or braid and fluoropolymer jacket. Approved for use in both safe and hazardous areas. Available for voltages 100 – 120VAC and 208 – 277VAC.

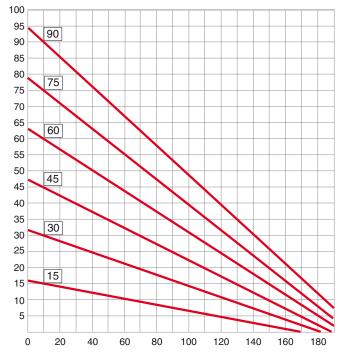
#### FREEZSTOP SUPER

FSS withstand temperatures - 150°C energised / 200°C un-energised.




igh Temperature - 250°C




Product Data - Parallel Self-regulating Heaters

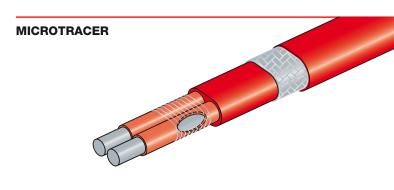
| SUPER - FS<br>MAXIMUM<br>Cat<br>Ref | LENG | -  | ) vs. CIR | CUIT BR | EAKE<br>230V<br>20A |    | E |
|-------------------------------------|------|----|-----------|---------|---------------------|----|---|
| 15FSS                               | 81   | -  | -         | 162     | -                   | -  |   |
| 30FSS                               | 46   | 57 | -         | 92      | 114                 | -  |   |
| 40FSS                               | 33   | 42 | 49        | 66      | 84                  | 98 | ; |
| 55FSS                               | 26   | 32 | 40        | 52      | 64                  | 80 | : |
|                                     |      |    |           |         |                     |    |   |

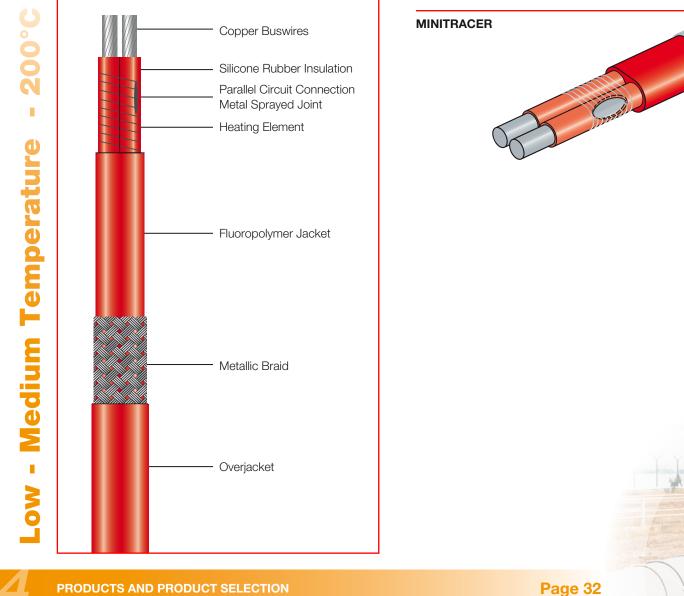


### ULTIMO - FSU Specification Data MAXIMUM LENGTH (m) vs. CIRCUIT BREAKER SIZE

| Cat                                                |     | 11  | 5V  |     | 230V<br>16A 20A 25A 32A |     |     |     |  |  |  |
|----------------------------------------------------|-----|-----|-----|-----|-------------------------|-----|-----|-----|--|--|--|
| Ref                                                | 16A | 20A | 25A | 32A | 16A                     | 20A | 25A | 32A |  |  |  |
| 15FSU<br>30FSU<br>45FSU<br>60FSU<br>75FSU<br>90FSU | 63  | 77  | -   | -   | 126                     | 154 | -   | -   |  |  |  |
| 30FSU                                              | 36  | 41  | 51  | -   | 72                      | 82  | 102 | -   |  |  |  |
| 45FSU                                              | 31  | 39  | 44  | -   | 62                      | 78  | 88  | -   |  |  |  |
| 60FSU                                              | 25  | 31  | 38  | -   | 50                      | 62  | 76  | -   |  |  |  |
| 75FSU                                              | 21  | 26  | 32  | 41  | 42                      | 52  | 64  | 82  |  |  |  |
| 90FSU                                              | 17  | 21  | 27  | 34  | 34                      | 42  | 54  | 68  |  |  |  |




FULL TECHNICAL DATA SHEETS ARE AVAILABLE ON OUR WEBSITE FOR ALL PRODUCTS www.heat-trace.com




#### **MINITRACER - Low to Medium Temperature Range Parallel Constant Power Heating Cables for** exposure temperatures up to 200°C

Types MTF and EMTF are parallel resistance, constant wattage, cut-to-length heating cables that can be used for freeze protection or low to medium process heating of pipework and vessels. They can be cut to length at site and easily terminated. Suitable for use in both safe and hazardous areas. MTF and EMTF heaters are available with metallic braid, or braid and fluoropolymer outer jacket.

Available for 100/120 and 208/240VAC Installation of the heating cables is quick and simple and requires no special skills or tools. Termination and power connection components are all provided in convenient kits.







| OUTPUT MAX                                                                                                                                                                     |                                        |                                             | WORKPIECE TEMPERATURES (°C)                     |                                                  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------|-------------------------------------------------|--------------------------------------------------|--|--|
| (W/m)         11:           6.5         8:           13         5:           23         4:           33         3:           50         3:           * For +10% end to end pow | 2 164<br>8 116<br>4 87<br>6 73<br>0 59 | <b>(W/m)</b><br>6.5<br>13<br>23<br>33<br>50 | <b>EMTF-C</b><br>190<br>175<br>145<br>100<br>60 | <b>EMTF-CF</b><br>190<br>185<br>155<br>100<br>70 |  |  |

to end power output variation

| MTF Specification Data<br>MAXIMUM LENGTH (m) vs. CIRCUIT BREAKER SIZE<br>OUTPUT MAX. CIRCUIT LENGTH* |      |       | MAXIMUM PIPE / WORKPIECE TEMPERATURES (°C)<br>CAT NOM. AREA CLASSIFICATION<br>REF OUTPUT HAZARDOUS |       |           |     |            |     |     |     |      |
|------------------------------------------------------------------------------------------------------|------|-------|----------------------------------------------------------------------------------------------------|-------|-----------|-----|------------|-----|-----|-----|------|
| (W/m)                                                                                                | 115V | 230V  |                                                                                                    | (W/m) | <b>T6</b> | T5  | <b>T</b> 4 | Т3  | T2  | T1  | SAFE |
| 6.5                                                                                                  | 106  | 212   | MTFC                                                                                               | 6.5   | 60        | 75  | 120        | 190 | 190 | 190 | 190  |
| 13                                                                                                   | 75   | 150   |                                                                                                    | 13    | 40        | 55  | 95         | 175 | 180 | 180 | 180  |
| 23                                                                                                   | 56   | 113   |                                                                                                    | 23    | -         | 30  | 65         | 155 | 155 | 155 | 155  |
| 33                                                                                                   | 47   | 94    |                                                                                                    | 33    | -         | -   | 40         | 115 | 120 | 120 | 120  |
| 50                                                                                                   | 38   | 76    |                                                                                                    | 50    | -         | -   | -          | 70  | 80  | 80  | 80   |
| * For ±10% end to end power output variation                                                         |      | MTFCI | <b>F</b> 6.5                                                                                       | 60    | 80        | 125 | 190        | 190 | 190 | 190 |      |
|                                                                                                      |      |       |                                                                                                    | 13    | 35        | 50  | 100        | 185 | 185 | 185 | 185  |
|                                                                                                      |      |       |                                                                                                    | 23    | -         | 25  | 55         | 160 | 165 | 165 | 165  |

#### **POWER CONVERSION FACTORS**

#### **115V HEATING CABLE**

33

50

| 125V | Multiply output by 1.18 |  |
|------|-------------------------|--|
| 120V | Multiply output by 1.09 |  |
| 110V | Multiply output by 0.91 |  |
| 100V | Multiply output by 0.76 |  |

#### 230V HEATING CABLE

35 115 120 120

80 85 85

277V Multiply output by 1.45 240V Multiply output by 1.09 220V Multiply output by 0.91 208V Multiply output by 0.82

For conditions other than worst case, or pipes of other materials (eg. plastic, stainless steel, etc.), consult Heat Trace Ltd. Tolerances: Voltage +10%; Resistance +10%; -0%

- 200°C Low - Medium Temperatu

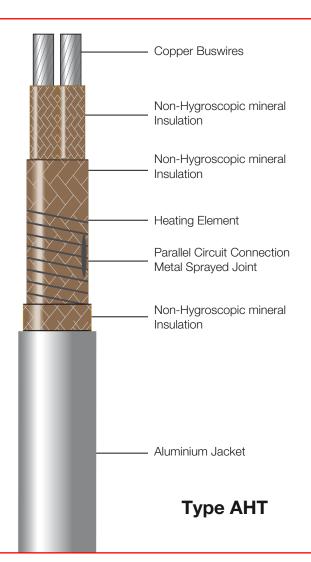
120

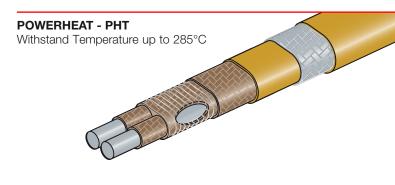
85

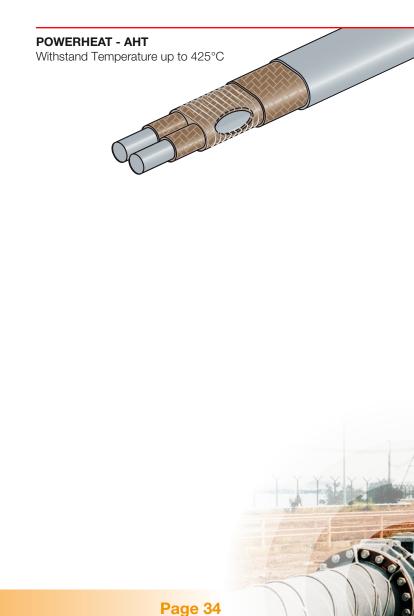


Page 33

PRODUCTS AND PRODUCT SELECTION





#### **POWERHEAT - High Temperature Range** Parallel Constant Power Heating Cables for exposure temperatures up to 425°C

Powerheat range PHT and AHT are parallel circuit, mineral insulated, cut-to-length, constant power heating cables. They are used for freeze protection and process heating of pipework and vessels, where very high withstand temperatures, or where high power outputs are required. Their cut-to-length capability means they can be easily terminated at site. They are suitable for use in both safe and hazardous areas.

Powerheat cables are insulated with multiple layers of non-hygroscopic mineral materials to withstand high temperatures. PHT is available with a metallic braid, or braid and fluoropolymer outer jacket. AHT cables have an aluminium outer jacket, giving a high mechanical strength, yet still retaining flexibility. Available for 100/120 and 208/277VAC.







High Temperature - 425°C



| PHT Specification Data<br>MAXIMUM LENGTH (m) vs. CIRCUIT BREAKER SIZE<br>OUTPUT MAX. CIRCUIT LENGTH* |      |      | MAXIMUM PIPE / WORKPIECE TEMPERATURES (°C)<br>CAT NOM. AREA CLASSIFICATION<br>REF OUTPUT HAZARDOUS |      |           |    |            |     |           |     |      |
|------------------------------------------------------------------------------------------------------|------|------|----------------------------------------------------------------------------------------------------|------|-----------|----|------------|-----|-----------|-----|------|
| (W/m)                                                                                                | 115V | 230V | (V                                                                                                 | V/m) | <b>T6</b> | T5 | <b>T</b> 4 | Т3  | <b>T2</b> | T1  | SAFE |
| 10                                                                                                   | 79   | 152  | PHTN                                                                                               | 10   | 44        | 61 | 102        | 180 | 275       | 275 | 275  |
| 30                                                                                                   | 46   | 88   |                                                                                                    | 30   | -         | -  | 24         | 116 | 241       | 241 | 241  |
| 50                                                                                                   | 35   | 68   |                                                                                                    | 50   | -         | -  | -          | 48  | 190       | 190 | 190  |
| 70                                                                                                   | 30   | 56   |                                                                                                    | 70   | -         | -  | -          | -   | 129       | 129 | 129  |
|                                                                                                      |      |      | PHTNF                                                                                              | 10   | 40        | 60 | 105        | 186 | 275       | 275 | 275  |
| * For ±10% end to end power output variation                                                         |      |      | 30                                                                                                 | -    | -         | 22 | 132        | 249 | 249       | 249 |      |
|                                                                                                      |      |      |                                                                                                    | 50   | -         | -  | -          | 63  | 204       | 204 | 204  |

70

100

150

| AHT Specification Data                      |            |             |  |  |  |  |  |  |  |
|---------------------------------------------|------------|-------------|--|--|--|--|--|--|--|
| MAXIMUM LENGTH (m) vs. CIRCUIT BREAKER SIZE |            |             |  |  |  |  |  |  |  |
| OUTPUT                                      | MAX. CIRCU | JIT LENGTH* |  |  |  |  |  |  |  |
| (W/m)                                       | 115V       | 230V        |  |  |  |  |  |  |  |
| 15                                          | 59         | 118         |  |  |  |  |  |  |  |
| 30                                          | 42         | 83          |  |  |  |  |  |  |  |
| 50                                          | 32         | 64          |  |  |  |  |  |  |  |
| 100                                         | 23         | 46          |  |  |  |  |  |  |  |
| 150                                         | 19         | 37          |  |  |  |  |  |  |  |

| MAXIMUM PIPE / WORKPIECE TEMPERATURES (°C)<br>CAT NOM. AREA CLASSIFICATION<br>REF OUTPUT HAZARDOUS |       |           |    |           |     |     |     |      |  |
|----------------------------------------------------------------------------------------------------|-------|-----------|----|-----------|-----|-----|-----|------|--|
|                                                                                                    | (W/m) | <b>T6</b> | T5 | <b>T4</b> | Т3  | T2  | T1  | SAFE |  |
| AHT                                                                                                | 15    | -         | 36 | 71        | 160 | 289 | 350 | 350  |  |
|                                                                                                    | 30    | -         | 11 | 28        | 100 | 246 | 323 | 323  |  |
|                                                                                                    | 50    | -         | -  | -         | 39  | 178 | 276 | 276  |  |

\* For ±10% end to end power output variation

#### **POWER CONVERSION FACTORS**

#### 115V HEATING CABLE 230V HEATING CABLE

125VMultiply output by 1.18277VMultiply output by 1.45120VMultiply output by 1.09240VMultiply output by 1.09110VMultiply output by 0.91220VMultiply output by 0.91100VMultiply output by 0.76208VMultiply output by 0.82

For conditions other than worst case, or pipes of other materials (eg. plastic, stainless steel, etc.), consult Heat Trace Ltd. Tolerances: Voltage +10%; Resistance +10%; -0%

147

140

36

147 147

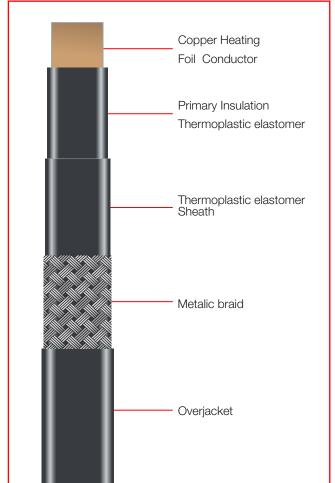
48 140

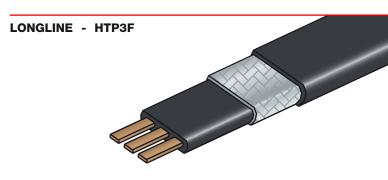
36

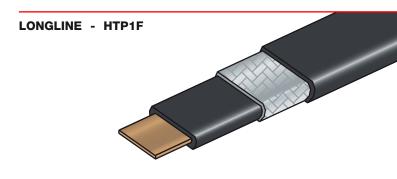
FULL TECHNICAL DATA SHEETS ARE AVAILABLE ON OUR WEBSITE FOR ALL PRODUCTS www.heat-trace.com



# Product Data - Series Resistance Heaters


#### LONGLINE - Low Temperature Range Series constant power heating cables for long pipelines. Exposure temperatures up to 125°C


Longline HTP3F and HTP1F are series resistance, constant power heating cables used for freeze protection, or, process temperature maintenance of long pipelines where low temperatures are encountered.


HTP3F cables are used typically for pipelines up to 2km between supply points. HTP1F cables are used where there is approx 10km between supply points.

Longline series heating cables minimise the number of electrical supplies needed and so minimise supply cabling / distribution equipment costs. Circuits are often fed at the pipe ends only. All cables are available with metallic braid, braid and thermoplastic jacket, or braid and fluoropolymer jacket.

This style of cable is specifically designed to suit each application. The output of the heater is a function of the circuit length, the size of the conductor foils and the supply voltage.









### Product Data - Series Resistance Heaters

#### HTP3F Specification Data MAXIMUM PIPE / WORKPIECE TEMPERATURES (°C) NOM. OUTPUT (W/m) HTP3F-C HTP3F-CT/CF

| (**/11) | <b>ПГР3F-C</b> | HIP3F-CI/CF |
|---------|----------------|-------------|
| 10      | 109            | 100         |
| 15      | 95             | 85          |
| 23      | 80             | 70          |
|         |                |             |

For conditions other than worst case, or pipes of other materials (eg. plastic, stainless steel, etc.), consult Heat Trace Ltd.

Tolerances: Voltage +10%; Resistance +10%; -0%

#### HTP1F Specification Data MAXIMUM PIPE / WORKPIECE TEMPERATURES (°C) NOM. OUTPUT

| (W/m) | HTP1F-C | HTP1F-CT/CF |
|-------|---------|-------------|
| 10    | 109     | 100         |
| 15    | 95      | 85          |
| 23    | 80      | 70          |

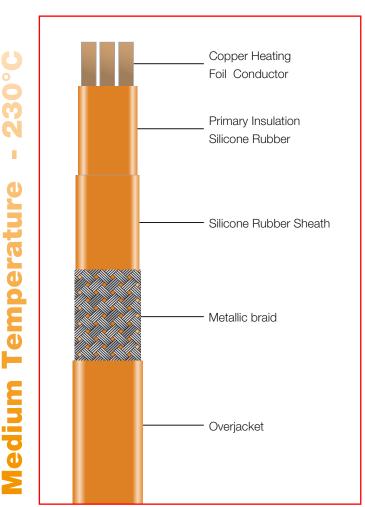
For conditions other than worst case, or pipes of other materials (eg. plastic, stainless steel, etc.), consult Heat Trace Ltd.

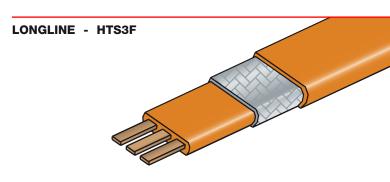
Tolerances: Voltage +10%; Resistance +10%; -0%





### Product Data - Series Resistance Heaters


#### **LONGLINE - Medium Temperature Range** Series constant power heating cables for long pipelines. Exposure temperatures up to 230°C


Longline HTS3F and HTS1F are series resistance, constant power heating cables with silicone insulation, used for freeze protection, or process temperature maintenance of long pipelines where medium temperatures are encountered.

HTS3F cables are used generally for long pipelines up to 2km between supply points.

HTS1F cables are typically used where there is approx up to 10km between supply points. Longline series heating cables minimise the number of electrical supplies needed and so minimises supply cabling / distribution equipment costs. Circuits are often fed at the pipe ends only. All cables are available with metallic braid, braid and thermoplastic jacket, or braid and fluoropolymer jacket.

This style of cable is specifically designed to suit each application. The output of the heater is a function of the circuit length, the size of the conductor foils and the supply voltage.









Product Data - Series Resistance Heaters

| HTS3F Specification Data<br>MAXIMUM PIPE / WORKPIECE TEMPERATURES (°C)<br>CAT NOM. AREA CLASSIFICATION<br>REF OUTPUT HAZARDOUS |      |           |    |            |     |     |     |      |  |
|--------------------------------------------------------------------------------------------------------------------------------|------|-----------|----|------------|-----|-----|-----|------|--|
| ()                                                                                                                             | W/m) | <b>T6</b> | T5 | <b>T</b> 4 | Т3  | T2  | T1  | SAFE |  |
| HTS3F-C                                                                                                                        | 10   | 48        | 66 | 107        | 181 | 218 | 218 | 218  |  |
|                                                                                                                                | 20   | _         | 32 | 75         | 158 | 191 | 191 | 191  |  |
|                                                                                                                                | 30   | _         | _  | 41         | 133 | 164 | 164 | 164  |  |
|                                                                                                                                | 40   | _         | _  | _          | 109 | 134 | 134 | 134  |  |
|                                                                                                                                | 50   | _         | _  | _          | 76  | 97  | 97  | 97   |  |
|                                                                                                                                | 60   | _         | _  | _          | 30  | 46  | 46  | 46   |  |
| HTS3F-CS                                                                                                                       | 10   | 58        | 74 | 112        | 181 | 208 | 208 | 208  |  |
|                                                                                                                                | 20   | 37        | 54 | 94         | 166 | 180 | 180 | 180  |  |
|                                                                                                                                | 30   | _         | 31 | 74         | 153 | 158 | 158 | 158  |  |
|                                                                                                                                | 40   | _         | _  | 51         | 127 | 127 | 127 | 127  |  |
|                                                                                                                                | 50   | -         | _  | 27         | 93  | 93  | 93  | 93   |  |
|                                                                                                                                | 60   | _         | _  | _          | _   | -   | _   | 57   |  |
| HTS3F-CF                                                                                                                       | 10   | 58        | 74 | 112        | 181 | 192 | 192 | 192  |  |
|                                                                                                                                | 20   | 37        | 54 | 94         | 166 | 178 | 178 | 178  |  |
|                                                                                                                                | 30   | _         | 31 | 74         | 153 | 165 | 165 | 165  |  |
|                                                                                                                                | 40   | -         | _  | 51         | 127 | 127 | 127 | 127  |  |
|                                                                                                                                | 50   | -         | _  | 27         | 93  | 93  | 93  | 93   |  |
|                                                                                                                                | 60   | -         | _  | -          | -   | _   | _   | 57   |  |

For conditions other than worst case, or pipes of other materials (eg. plastic, stainless steel, etc.), consult Heat Trace Ltd.

Tolerances: Voltage +10%; Resistance +10%; -0%

#### HTS1F Specification Data MAXIMUM PIPE / WORKPIECE TEMPERATURES (°C) NOM.OUTPUT

| (W/m) | HTS1F-C | HTS1F-CS | HTS1F-CF |
|-------|---------|----------|----------|
| 10    | 218     | 208      | 192      |
| 20    | 191     | 180      | 178      |
| 30    | 164     | 158      | 165      |
| 40    | 134     | 127      | 127      |
| 50    | 97      | 93       | 93       |
| 60    | 46      | 57       | 57       |

For conditions other than worst case, or pipes of other materials (eg. plastic, stainless steel, etc.), consult Heat Trace Ltd.

Tolerances: Voltage +10%; Resistance +10%; -0%

FULL TECHNICAL DATA SHEETS ARE AVAILABLE ON OUR WEBSITE FOR ALL PRODUCTS www.heat-trace.com



### **Termination Components**

#### **Terminations – power end**

Heat Trace have three different methods for the termination of its parallel heat tracers at the power supply. All methods are available for both safe and hazardous locations:-

- Direct Entry Sealed Termination Unit (DESTU)

   This is an improved method, where the junction box is connected to the DESTU, which is mounted onto the pipe surface. The tracer passes through the DESTU into the junction box, avoiding the possibility of damage to the tracer where it exits the thermal insulation.
- StripFree Unit The StripFree connection box has been specially developed by Heat Trace to reduce installation time and component costs. Tracers can be terminated without the need to strip the ends of self-regulating tracers. StripFree units are available for connection to the power supply and also for series and tee connections. StripFree boxes are particularly useful for small diameter instrument lines which cannot support large junction boxes.
- Standard Method This uses tracer termination gland components and a junction box. To avoid the possibility of damage to the tracer where it exits from the thermal insulation, a separate lagging entry kit is required.









## **Termination Components**

#### **Terminations – remote end**

Heat Trace have three different methods for the termination of its parallel heat tracers at the remote end. All methods are available for both safe and hazardous locations:-

- Moulded end seal The silicone rubber end seal is fixed with an adhesive. It is a simple and low cost form of sealing.
- StripFree end seal The StripFree end seal has been specially developed by Heat Trace to reduce installation time. The end of the tracer is simply pushed into the end seal which immediately seals. It cannot be removed without a tool, and therefore provides additional safety. This seal is considered to be the best form of end-sealing.
- Heat Shrink seal The fitting of shrink seals require the use of a hot air gun. This may not be practical in a hazardous area.







FULL TECHNICAL DATA SHEETS ARE AVAILABLE ON OUR WEBSITE FOR ALL PRODUCTS www.heat-trace.com



### TEMPERATURE CONTROL - Selection Guide

The selection of an appropriate temperature control system is dictated by its purpose or objective. This guide to selection considers two forms of control:-

- **Air-sensing**, where the air temperature is monitored and the heating load is either:
- a) fully applied at a set temperature, as traditionally used for freeze protection installations, or,
- b) varied with changes in ambient temperature, and hence heat losses (called PowerMatching).
- **Pipe or surface sensing**, where the controller sensor is located directly on the pipe or equipment surface. This method has been traditionally employed for all temperature maintenance duties.

# The purpose or objective of the temperature control system may be any one or more of the following:-

#### 1. Ensuring temperature safety

It has already been stated in Section 2 (page 11) that temperature control to ensure temperature safety is the least favoured option – inherently temperature safe self-regulating heaters, or a stabilised design provide greater safety. But where necessary for ensuring temperature safety, pipe or surface sensing is almost always required. Care is required to ensure that all pipes which can experience differing flow conditions are controlled independently – this may result in a large number of heating circuits.

#### 2. Process temperature accuracy

The three levels of process temperature accuracy defined in IEC heat tracing standards, types I, II, and III, are explained in Section 3 (page 17). The approach to selecting the best control system for each type of process is described on pg42.



#### 3. Energy efficiency

The highest levels of energy efficiency have usually required a pipe or surface sensing form of control system. This again often results in multiple heating circuits to accommodate the many permutations of flow conditions. In this case, sections of pipe having differing flow conditions need to be controlled independently.

The degree of energy efficiency is also influenced by the accuracy of the controller – electronic devices are often more accurate than mechanical types.

#### 4. Low capital costs

The lowest capital costs will usually result from a temperature control system having the fewest number of heating circuits. This is normally achieved by an air-sensing form of temperature control system.





# Type I process control – maintaining above a minimum temperature level

It should be recognised that a Type I control system will be extremely energy wasteful. For example, a freeze protection installation controlled by an air-sensing thermostat will be 100% energised at all times when the ambient temperature falls below the thermostat setting (typically 2 or 3°C). However, the average heating requirement over the number of winter hours that the system is energised is likely to be less than 20%, i.e. **over 80% of the delivered heat will be wasted.** 

Most of this waste heat can be avoided by upgrading the system to a Type II process, achieved at a very modest cost, where energy savings recover the additional cost in a very short period of time.

FOR THIS REASON, HEAT TRACE RARELY RECOMMEND A TYPE I TEMPERATURE CONTROL SYSTEM.

# Type II process control – maintaining within a broad temperature band

This has traditionally been achieved by means of mechanical capillary thermostats, having their sensors located on the pipe surface.

However, in-plant piping systems are often complex, having multiple flow permutations. To control all possible permutations, a separate thermostat is required for each section of pipe having differing flow conditions. This results in many heating circuits within an expensive distribution system.

To meet the requirements of a Type II process, whilst at the same time reducing to a minimum the number of heating circuits, and hence, distribution and control panel costs, Heat Trace is able to recommend a heat tracing system where:-

- a) the tracers are spiralled to the pipes to just compensate for heat losses at the minimum ambient design temperature.
- b) the controller is Heat Trace's unique PowerMatch unit. This monitors the ambient temperature and varies the heat delivered by the tracer according to changes in ambient temperature, and hence, heat losses.

By monitoring the air rather than the pipe surface temperature, only one controller is needed for each different 'maintain' temperature. The system can be used equally for either freeze protection of process temperature maintenance.

This system may occasionally result in heat being delivered unnecessarily to some sections of pipe having flow conditions. However, the system is an excellent balance of process temperature accuracy, energy efficiency, and low capital costs.

### TEMPERATURE CONTROL – Selection Guide

# Type III process control – maintaining within a narrow temperature band

To control all sections of a piping system within a narrow temperature band of 2°C, as required for temperature sensitive materials (e.g. chocolate), has traditionally required the use of numerous high accuracy electronic controllers, controlling several sections of pipe which may have differing flow conditions. This has necessarily been provided at a high capital cost.

However, Type III process temperature accuracy can now be achieved with the same PowerMatching control system described for Type II systems above, but with the addition of a fine tuning temperature control.

Again, the heating load delivered at any time is matched to losses according to the ambient conditions. To ensure a narrow band process accuracy, a further sensor is located on a short heated 'dummy' line incorporated into the piping system.

### **SUMMARY**

Type I process control – maintaining above a minimum temperature level

 is very energy wasteful. Not recommended – upgrade to Type II process control

**Type II process control** – maintaining within a broad temperature band

 can be achieved by air-sensing PowerMatch control to provide good energy efficiency from the fewest number of heating circuits i.e. least capital cost

**Type III process control** – maintaining within a narrow temperature band

 can be achieved by air-sensing PowerMatch control plus fine-tune line control to provide good energy efficiency from the fewest number of heating circuits.



# Type I Process Control - Maintain above a minimum point

| Туре             | Description                                                                                                                                                                                                                                                                                                                                                 | Area<br>Location                         | Air or pipe/<br>Equipment Sensing |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------|
| AT-F<br>AIRSTAT  | The AT-F AIRSTAT is a non-adjustable<br>controller that energises the heating circuit<br>when the sensor temperature falls to +2°C.<br>The system then de-energises as the sensor<br>temperature rises above +5°C. It has a MAINS<br>ON and HEATER ON indication.                                                                                           | Safe Areas                               | Air Sensing                       |
| CT<br>CAPSTAT    | The CAPSTAT is a temperature adjustable<br>ON-OFF thermostat comprising a liquid filled<br>sensing bulb connected to an electrical switch<br>via a capillary tube. Expansion of the liquid<br>on rise in temperature causes the switch to<br>open and on cooling, it closes. The CAPSTAT<br>sensing bulb may be positioned to sense the<br>air temperature. | Safe Areas                               | Air Sensing                       |
| CT-FL<br>CAPSTAT | The CAPSTAT CT-FL and CT-FL/DUAL are<br>temperature adjustable ON-OFF thermostats<br>but for use in Zone 1 and Zone 2 hazardous<br>areas, with enclosures suitable for Gas Groups<br>IIA, IIB and IIC . The sensing bulb may be<br>positioned to sense the air temperature.                                                                                 | Hazardous Areas<br>Zone 1 & Zone 2 Areas | Air Sensing                       |
| FULL TE(         | CHNICAL DATA SHEETS ARE AVAILABLE ON OUR W<br>www.heat-trace.com                                                                                                                                                                                                                                                                                            | VEBSITE FOR ALL PRODUC                   | STS                               |



## Type I Process Control - Maintain above a minimum point





## Type II Process Control - Maintain within a broad band

| Туре                | Description                                                                                                                                                                                                                                                                | Area<br>Location                                             | Air or pipe/<br>Equipment Sensing |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------|--|
| POWERMATCH<br>Micro | The POWERMATCH Micro is an electronic<br>digital controller that senses changes in air<br>temperature and then automatically adjusts<br>the ratio of the periods in which the heaters<br>are energised and switched off so that the<br>heat delivered matches heat losses. | Safe Area - For<br>hazardous areas<br>protection is required | Air Sensing                       |  |
|                     |                                                                                                                                                                                                                                                                            |                                                              |                                   |  |

**POWERMATCH** The POWERMATCH is an electronic control system that senses ambient temperatures and automatically adjusts the percentage of power output from the heaters to directly match heat losses. It uses a Pt100 sensor to measure the ambient temperature.

Safe Area - For hazardous areas protection is required Air Sensing

CT CT-FL CT-FL/Dual

The CAPSTAT is a temperature adjustable ON-OFF thermostat comprising a liquid filled sensing bulb connected to an electrical switch via a capillary tube. Expansion of the liquid on rise in temperature causes the switch to open and on cooling, it closes. The CAPSTAT sensing bulb may be positioned to sense the line tempaerature or surface temperature of a vessel. Safe Area Hazardous Area Zones 1 & 2 Line Sensing

FULL TECHNICAL DATA SHEETS ARE AVAILABLE ON OUR WEBSITE FOR ALL PRODUCTS www.heat-trace.com



# Type II Process Control - Maintain within a broad band

| Switch Rating                                                                                               | Comments                                                                                                                                                                                                                                                                                                                                                                                         |                                |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 8 amps direct switching, or via suitably rated contactor                                                    | <ul> <li>Unit located in control panel</li> <li>Powermatching is significantly<br/>more efficient than conventional air<br/>sensing thermostats</li> <li>Large blocks of heating may be<br/>switched from a single controller<br/>- fewer heating circuits are required</li> <li>May be used with self regulating<br/>heating cables</li> <li>Temperature range -50 to +80°C</li> </ul>          |                                |
| Switching via solid state relays<br>or thyristor drives up to 250<br>amps per phase and up to<br>1000 Volts | <ul> <li>Unit located in control panel</li> <li>Powermatching is significantly more efficient than conventional air sensing thermostats</li> <li>Large blocks of heating may be switched from a single controller - fewer heating circuits are required</li> <li>Ideal for large 3 phase heating loads such as long pipeline heating circuits</li> <li>Temperature range -50 to +80°C</li> </ul> |                                |
| 16 amps direct switching, or via suitably rated contactor.                                                  | <ul> <li>CT and CT-FL are adjustable thermostats with 3 temperature ranges:<br/>Type A 0–40°C<br/>Type B 20–110°C<br/>Type C 20–300°C</li> <li>Suitable for outdoor use</li> <li>One thermostat is required for each pipeline - more heating circuits may be required</li> </ul>                                                                                                                 |                                |
| Page                                                                                                        | 47                                                                                                                                                                                                                                                                                                                                                                                               | PRODUCTS AND PRODUCT SELECTION |



# Type III Process Control - Maintain within a narrow band

| Туре                    | Description                                                                                                                                                                                                                                                                | Area<br>Location                                             | Air or pipe/<br>Equipment Sensing |  |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------|--|--|
| POWERMATCH<br>Micro     | The POWERMATCH Micro is an electronic<br>digital controller that senses changes in air<br>temperature and then automatically adjusts<br>the ratio of the periods in which the heaters<br>are energised and switched off so that the<br>heat delivered matches heat losses. | Safe Area - For<br>hazardous areas<br>protection is required | Air Sensing and line sensing      |  |  |
|                         | A separate line sensing controller provides<br>fine tune control. This sensor may be located<br>on a "dummy" heated pipe section having no<br>flow (dead leg).                                                                                                             |                                                              |                                   |  |  |
| POWERMATCH              | The POWERMATCH is an electronic control<br>system that senses ambient temperatures<br>and automatically adjusts the percentage<br>of power output from the heaters to directly<br>match heat losses. It uses a Pt100 sensor to<br>measure the ambient temperature.         | Safe Area - For<br>hazardous areas<br>protection is required | Air Sensing and line sensing      |  |  |
|                         | A separate line sensor provides fine tune<br>control. This sensor may be located on a<br>"dummy" heated pipe section having no flow<br>(dead leg).                                                                                                                         |                                                              |                                   |  |  |
| DURASTAT &<br>CENTURION | The DURASTAT and CENTURION units<br>are proportional electronic temperature<br>controllers offering set point accuracy and<br>temperature control with line sensors.                                                                                                       | Safe Area - For<br>hazardous areas<br>protection is required | Line sensing                      |  |  |

| GUARDIAN<br>ENERGY<br>MANAGEMENT<br>SYSTEM | Guardian is an 8 channel, computer assisted<br>energy management, control and auditing<br>system for large / critical heat tracing<br>installations. It may be provided as a stand<br>alone system or integrated into the plant's<br>SCADA or DCS system. Details of the<br>auditing / monitoring facilities are provided<br>on pages 50 / 51 | Safe Area - For<br>hazardous areas<br>protection is required | Line sensing |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------|
| FULL TECHN                                 | ICAL DATA SHEETS ARE AVAILABLE ON OUR V<br>www.heat-trace.com                                                                                                                                                                                                                                                                                 | EBSITE FOR ALL PRODUCTS                                      |              |



# Type III Process Control - Maintain within a narrow band

| Switch Rating                                                                                             | Comments                                                                                                                                                       |                                                                                                                                                                                                         |                                                                                          |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 16 amps direct switching<br>or via suitably rated<br>contactor.                                           | <ul> <li>Powermatching is sign<br/>conventional air sensin<br/>provided by the additi</li> <li>Large blocks of heatin<br/>controller - fewer heatin</li> </ul> | ificantly more efficient than<br>the thermostats. Type III accuracy is<br>conal line sensing control<br>g may be switched from a single<br>ng circuits are required<br>regulating heating cables        |                                                                                          |
| Switching via solid state<br>relays or thyristor drives<br>up to 250 amps per pha<br>and up to 1000 Volts | <ul> <li>conventional air sensir<br/>provided by the additio</li> <li>Large blocks of heatin<br/>controller - fewer heatin</li> </ul>                          | ificantly more efficient than<br>g thermostats. Type III accuracy is<br>onal line sensing control<br>g may be switched from a single<br>ng circuits are required<br>neating loads such as long pipeline |                                                                                          |
| ET Direct Switching<br>20 Amps<br>MS Direct Switching<br>30 Amps                                          | ranges:<br>-20 to +80°C<br>70 to 170°C<br>160 to 260°C                                                                                                         | uired for each pipeline - more heating                                                                                                                                                                  |                                                                                          |
| Suitably rated relay or contactor                                                                         | <ul> <li>Guardian is temperatu</li> <li>One thermostat is required</li> <li>Dipeline - more heating be required</li> </ul>                                     | uired for each                                                                                                                                                                                          | Fortheat     Fortheat     Fortheat     Fortheat     Fortheat     Fortheat     Controlees |
|                                                                                                           | Page 49                                                                                                                                                        | PRODUCTS AND PRODUCT SE                                                                                                                                                                                 | LECTION                                                                                  |



## Circuit Monitoring

#### **Circuit Monitoring of smaller heat tracing installations**

Where critical to the process, circuit health monitoring is provided by Heat Trace's Watchdog system. This is located in the control and monitoring panel and periodically energises the circuits to ensure that they are operating correctly. In the event of damage to a tracer, an alarm is raised to enable corrective action. This can often take place before the pipeline has time to cool to an unacceptable level.

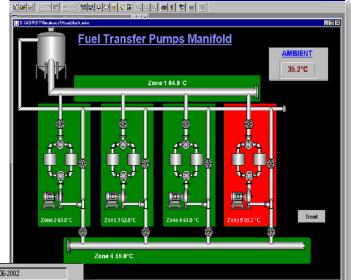
Watchdog is available as a single or 5 circuit device.

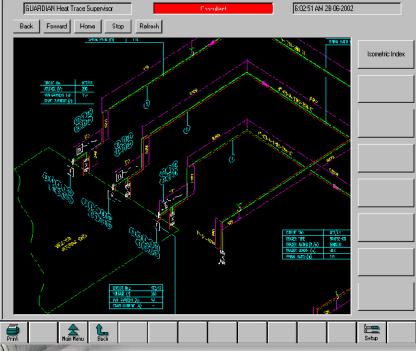






### Circuit Monitoring


#### **Circuit Monitoring of large heat tracing installations**


Large heat tracing installations, when critical to the process, may be monitored by the 5 circuit Watchdog monitoring devices shown opposite.

However, when the Guardian computer assisted energy management control and auditing system is selected, this provides the user with the ultimate in monitoring facilities. This SCADA type control has all the benefits of electronic control, complemented by the addition of computerisation. This development allows two-way communication between the control system and a remotely located computer. Additionally, all control parameters, collected data system drawings and system information can be stored and retrieved, and full visual indication is available.

Heating circuits are continuously monitored for correct function and temperature. Circuit currents and supply voltage may be measured and used by the software package to calculate the individual circuit power and running costs. Alarms are raised in the event of any non-compliance. A data link to the main process computer is also available, with the option of an internet protocol module for providing communications over TCP/IP and HTTP for web pages, or emailing of alarm messages.

Control and monitoring parameters may be inputted either remotely or locally as required. System parameters are stored in the computer and in each Guardian controller. This gives ultimate reliability, as all parameters are capable of being downloaded to replacement units.







## **Pre-installation**

It is essential that the heat tracing system is correctly installed, tested, commissioned, and maintained. Heat Trace will provide comprehensive instructions for the installation of the system equipment. However, we would recommend that the following points are taken into consideration:-

#### Personnel

Persons involved in the installation and testing of electric heat tracing systems should be suitably trained in all special techniques required. Installation should be carried out under the supervision of a qualified electrician who has undergone supplementary training in electric heat tracing systems. Where systems are for use in explosive gas atmospheres, additional qualifications apply, such as knowledge of system certifications.

#### **Equipment verification**

Prior to installation, the design data used for the heat tracing design should be verified and the as-built piping and other equipment should be checked against the enquiry drawings.

The installation of the heat tracing system should be coordinated with the piping, thermal insulation and instrument disciplines.

#### **Pre-installation testing**

Pre-installation tests shall be performed and documented on a checklist similar to that opposite. This also helps verify the heat tracing design.

- a) Heat tracers shall be visually checked for damage. Continuity and insulation checks should be made and insulation resistance measured from heat tracer conductors to the metallic braid or sheath, with a minimum 500 Vdc test voltage. The measured insulation resistance shall not be less than 20 MΩ.
- b) Controls shall be tested to ensure correct calibration of, for example, set points, operating temperature range and span.
- c) Control panels shall include documentation certifying that all wiring, layout and functions are correct and have been tested. A general inspection of the panels shall confirm that no damage has occurred in transit.





# Pre-installation checks

#### Table 1 - Pre-installation checks

|    | Items to be checked                                                                                                                                                                                                                 | Remarks                                                                                                                                                                        |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Is the workpiece fully erected and tested and all<br>temporary supports removed? Is the surface to be heated<br>free from sharp edges, weld spatter and rough surfaces?                                                             | Any welding or pressure testing after the installation of a heat tracer could damage the device                                                                                |
| 2  | Is the surface upon which the heat tracer is to be applied normal steel or non-metallic?                                                                                                                                            | If the surface is of polished stainless steel, very thin-walled<br>pipe or non-metallic of any kind, special precautions may be<br>necessary                                   |
| 3  | Do the items to be heated correspond in size, position, etc. with the design?                                                                                                                                                       | It is sometimes difficult to be sure that the correct pipe is being heated. A suitable line numbering system may be of assistance                                              |
| 4  | Has it been specified that metallic foil be installed before<br>the application of the heat tracer?                                                                                                                                 | This may be used to aid heat distribution                                                                                                                                      |
| 5  | Has it been specified that metallic foil be installed after the application of the heat tracer?                                                                                                                                     | This may be used to prevent insulation from surrounding the heat tracer or to aid heat distribution                                                                            |
| 6  | Can flow of product under normal or abnormal conditions reach temperatures greater than those that the heat tracer can withstand?                                                                                                   | This would normally be covered in the design stage; however,<br>further discussion with staff at the plant may show that<br>incorrect or out-of-date information has been used |
| 7  | Is the heat tracing system documentation (working drawings, designs, and instructions) available?                                                                                                                                   | No change should be contemplated without reviewing the<br>heat tracing system documentation, as careful calculations are<br>necessary to ensure safe operation                 |
| 8  | Can pipes or surfaces expand and contract so as to cause stress on any part of the heat tracing installation?                                                                                                                       | In this case precautions are necessary to avoid damage                                                                                                                         |
| 9  | Can sensors of temperature controllers be affected by external influences?                                                                                                                                                          | An adjacent heating circuit could affect the sensor                                                                                                                            |
| 10 | Is the heat tracer to be spiralled or zigzagged onto the workpiece, according to the design?                                                                                                                                        | Check design loading per unit length of pipe (or surface area) to determine if spiral or zigzag application is necessary                                                       |
| 11 | Are cold leads, when fitted, suitable for contact with the heated surface?                                                                                                                                                          | If the cold lead is to be buried under the insulation, it has to be<br>able to withstand the temperature                                                                       |
| 12 | Is the pipework hung from a pipe rack?                                                                                                                                                                                              | In this case, special precautions are required to ensure the weatherproofing of the insulation at points of suspension                                                         |
| 13 | Does pipework have its full complement of supports?                                                                                                                                                                                 | The addition of intermediate supports at a later stage could<br>damage the heating system                                                                                      |
| 14 | Are sample lines/bleed lines, etc. at the plant but not on drawings?                                                                                                                                                                | These could obstruct or prevent the fitting of the heat tracer,<br>and a review of the heat tracing system documentation may<br>be necessary                                   |
| 15 | Are other parameters used in the design of the equipment as specified by the design documentation?                                                                                                                                  |                                                                                                                                                                                |
| 16 | Are the heat tracers, controllers, junction boxes, switches, cable glands, etc., suitable for the environmental conditions and are they protected as necessary against corrosion and the ingress of liquids and particulate matter? |                                                                                                                                                                                |

Page 53

INSTALLATIONS



### Installation of heat tracers - General

Heat tracers should be attached to clean piping and equipment in accordance with the instructions. Care should be taken at flanges and fittings to position heaters so as to avoid damage. Check that the heater assembly can accommodate movement and vibration.

The installer should allow the appropriate amount of heater to compensate for additional heat losses from pipeline fittings, as allocated by the *Evolution* design software.

A heat tracer should be kept in as intimate a contact as possible to the heated surface. Where close contact is not possible, such as on valves, a heat-conductive covering of metal foil may be used.

It is recommended that the heat tracer is not folded, twisted, or allowed to overlap, cross or touch itself. Attention should be given to the minimum bending radius.

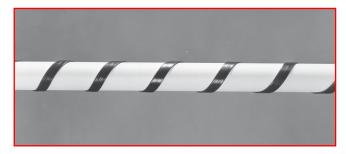
Where heat tracers cross possible sources of leaks, for example, flanges, they should be positioned to minimize contact with the leaking medium.

# Only genuine Heat Trace components may be used or else the system certification will be invalidated.

#### Straight tracing runs on pipe

Single straight traced runs are usually positioned at the underside of the pipe, fixed at 300mm centres, using only the correct Heat Trace fixing tape.

Multiple straight heat tracers should be equally spaced around the circumference of the pipe. Extra lengths of heat tracer will have been provided for in the design to compensate for the additional heat losses at pipe fittings, valves etc.


#### Spiral tracing runs on pipe

The pipe and equipment should be marked at the design spiral pitch. Then apply the heat tracer in a uniform spiral from the power supply point maintaining slight tension in the tracer as it is applied. Fix at no more than 2 metre centres using only the correct Heat Trace fixing tape.

Spiral tracing runs should be applied in such a way that valves, etc., can be easily removed or replaced.







INSTALLATIONS



## Installation of heat tracers - General

#### Connections and terminations

It is essential that all heat tracers are terminated correctly with approved components to Heat Trace's instructions.

Longline heat tracers intended for site termination should be checked to ensure that the installed lengths correspond to the design length and loading.

Connection of the heat tracer to the power supply should be such as to prevent physical damage, and positioned to prevent the ingress of water.

Heat tracing circuits are connected into Heat Trace junction boxes specifically designed for connection of the tracer. The boxes provide appropriate protection and certification. Junction box lids should not be left open at any time.

The metallic braid or sheath of the heat tracer must be bonded to the earthing system to provide for an effective ground path.

Tracer end seals must be securely fitted to Heat Trace's instructions and protected to avoid mechanical damage and ingress of water.

#### Marking and tagging

After installation, all the circuits must be properly marked / tagged, as follows:-

- a) Branch circuit breaker
- b) Monitor and alarm apparatus
- c) Heat tracer power connection
- d) Circuit number and set point for each temperature controller

Marking shall be carried out for each heat tracing circuit, on the respective junction box.

#### Post installation testing

The pre-installation insulation resistance test described above shall be repeated on all heat tracer circuits after installation, using a minimum 500Vdc megger. The measured insulation resistance shall not be less than 20 M $\Omega$ .

Continuity and resistance checks shall be made for each circuit and the installed tracer load confirmed with the design load.

The type, length and electrical data of each heat tracer shall be noted for inclusion in the final documentation. The connection points shall be recorded for entry in the piping and instrumentation diagrams.





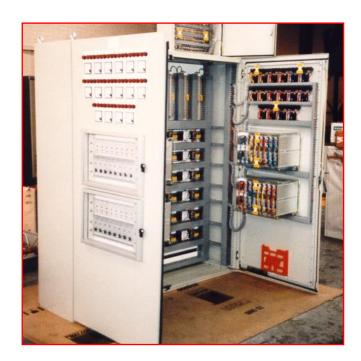




## Installation of control and monitoring equipment

#### General

The installer is usually responsible for fixing the control and monitoring and distribution panels. These will, as a minimum, provide over-current and earth-leakage protection as well as means of isolation. Some form of temperature control or limitation is usually provided to ensure safe temperatures or for energy efficiency purposes.


#### Verification of equipment suitability

The supplied controllers, thermostats, sensors, and related devices shall be checked to match those specified in the design with regard to the service temperature, the IP rating, and,for hazardous areas, certification. The certification of heat tracing systems may prescribe the use of specific components. In these cases it is mandatory to use only parts specified by Heat Trace.

#### Temperature controller and monitoring devices

The sensors of the temperature controllers may be air sensing or applied directly to the pipe. The sensors are usually resistance temperature detectors, or capillary tube thermostats.

Water and corrosive vapour intrusion can cause failure of temperature controllers. The cover or lid of a controller housing should always be closed after installation, except when required for access.









## Installation of control and monitoring equipment

#### **General sensor installation**

The sensor for surface temperature control is installed onto the surface of the pipe or equipment in accordance with the designer's instructions in a position that will provide a temperature representative of the overall circuit. The sensor should be positioned so as not to be influenced by the temperature of the heat tracer, or other factors such as heat sinks and solar gain.

Ambient temperature-sensing controllers should be sited in the most exposed position for the installation.

Line sensors should be strapped in good thermal contact with the pipe or equipment and protected so that thermal insulation cannot be trapped between the sensor and the heated surface. Care should be taken not to damage the capillary tube, or RTD leads, or to distort the sensor and thereby cause calibration error.

Care should be taken to ensure that the capillary tube, or RTD leads emerge from the thermal insulation in a manner that will not allow the ingress of moisture.

#### Sensor installation for temperature limiting device

When a system has to employ a temperature controller in order to ensure temperature safety, then clearly the positioning of the sensor is critical to the safety of the plant.

The sensor for the temperature limiting controller is installed onto the surface of the pipe or equipment in a position that will provide a temperature representative of the overall circuit. In order to assure that the safety temperature controller can accurately react to the maximum heat tracer surface temperature, particular attention must be paid to the location, method of attachment and set point. This method of sensor installation is based on the known relationship between the equipment temperature and the heater sheath temperature at a given power output.

It is important that the controller is set such that the heater sheath temperature does not exceed the limiting temperature under worst-case conditions (e.g. voltage +10%, tracer at upper limit of manufacturing power tolerance, heater out of contact with the pipe/equipment, high ambient, no external convection).



#### Warning

Some heat tracing companies offer low cost series resistance heaters of minimal mechanical strength that are designed for use with voltage regulating devices. These require the sensor of the over-temperature controller to be fitted to the surface of the heater itself. However, this is a practice that Heat Trace Ltd. does not recommend because:-

- It will rarely be known to be sensing the hottest point of the heater (which is likely to be where the heater is out of contact with the equipment) and
- When the sensor is removed, for example during maintenance work, it cannot be guaranteed to be returned to the hottest part of the heater

The practice of fitting a temperature sensor to the heater to ensure temperature safety is dangerous!





## Installation of thermal insulation system

Precautions must be taken to protect tracers from mechanical damage and moisture intrusion after they have been installed and prior to the application of thermal insulation. The installation supervisor shall coordinate with the thermal insulation contractor, so that the thermal insulation is applied as soon as possible after the installation and testing of heat tracers.

It should be confirmed that the thermal insulation to be installed is of the size, specification and thickness used for the design of the heat tracing system.

The thermal insulation installation crew should be experienced /trained in fitting insulation over tracers, particularly with a view to avoiding mechanical damage, which is most likely when cutting and forming sheet metal cladding around flanges and other line equipment.

Warning labels must be fixed to the cladding at 6m intervals advising that electric tracers are installed beneath the thermal insulation and fitted to the cladding over each valve or item of equipment that may require periodic maintenance.

#### Field circuit insulation resistance test

The test procedure described above shall be conducted on all heat tracer circuits after lagging, with the requirement that the measured insulation resistance shall not be less than 5 M $\Omega$ .

#### **Visual inspection**

Carry out a visual inspection of the thermally insulated system to ensure that:

- 1. moisture cannot penetrate the insulation
- screws used for fastening cladding are short enough to preclude any possibility of damage to tracers or temperature sensors.
- 3. entry cut-outs in the cladding for heat tracers, temperature sensors, etc., are dimensioned so as to render contact impossible.
- 4. cladding joints and thermal insulation entries are properly sealed with an elastic, non-hardening sealant resistant to chemical attack.

#### **Documentation**

The thermal insulation material and its thickness shall be documented.







The branch circuit wiring of each heat tracing circuit requires an over-current protective device. The size and type of distribution wiring, and the ratings of the branch circuit protective devices is based on heater start-up currents and their duration at the minimum temperature that the heat tracing device may experience.

An earth fault protective device RCD shall also be provided Check that protective devices are sized correctly to the rated current and, where applicable, have appropriate certificates.

# Installation of electrical power





A FULL INSTALLATION, TESTING AND MAINTENANCE MANUAL IS AVAILABLE ON OUR WEBSITE www.heat-trace.com





### Commissioning & Documentation

#### **Functional check and final documentation**

The heat tracing system(s) shall be commissioned after the thermal insulation has been installed and the electrical distribution is completed. The heat tracer commissioning record given in Table 2 shall be completed and retained.

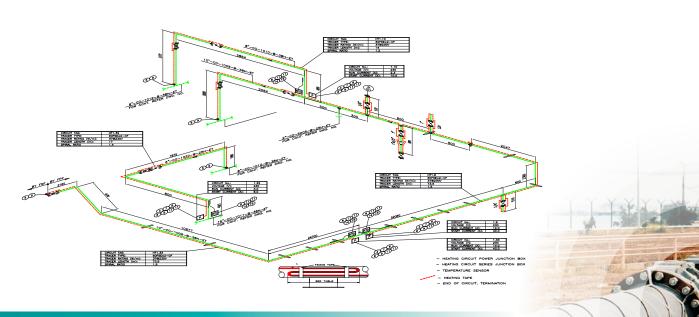
- a) Close all branch circuits and verify proper current. A temporary bypass may be required for the temperature control device.
- b) Verify that monitor or alarm circuits are operable. A bypass may be required at field contacts.
- c) Fill out the heat tracer commissioning record (Table 2) for each circuit. This shall clearly document all testing and commissioning data.
- d) Record the electrical insulation resistance values for each measurement taken.
- e) Record the applied voltage and resulting current after five minutes of energization, and pipe temperature if required.
- f) Verify that the alarm and monitor components operate as intended.
- g) Verify that the calibration check at the temperature controller setpoint has been performed and the controller has been set at this value.

#### **Final documentation**

Adequate and uniform documentation of the electric heat tracing circuits is an essential precondition for economical maintenance of this equipment. This is especially important to facilitate rapid troubleshooting in the event of circuit problems. It also provides the basis for simpler, faster and less costly handling of any desired modifications and expansions by a specialist for electric heat tracing systems.

The documentation of each heating circuit of a heat tracing system shall include the following elements:

#### **Design and testing documentation:**


- a) Table of contents
- Piping diagram showing the heat tracing circuits and the location of power points, connections, splices, tees, end terminations, and temperature sensors for control and limitation
- c) For vessels: layout of the heat tracing
- d) Pipe and insulation list
- e) Individual circuit length of heat tracers
- f) Calculation and dimensioning data
- g) Material list
- h) Heat tracer installation instructions
- i) Heater cabling plan
- j) Description of and installation instructions for temperature sensors
- k) Heater commissioning record (Table 2)
- I) Temperature profile measurement
- m) Installation certificate

#### **Circuit diagrams:**

- a) Wiring and circuit diagram
- b) Terminal connection diagrams, switchgear with parts list
- c) Installation instructions

#### Other:

- a) Technical descriptions and instruction manuals for the individual pieces of equipment
- b) Functional diagram as agreed to with the design engineer
- c) Certificates or declarations of conformity from a certification agency for explosive gas atmosphere equipment, as required





# Commissioning & Documentation

### Table 2 - Heat tracer commissioning record

| Location                                                                    |                                                               | System                     |                |       | Project number       |               |            | r               |
|-----------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------|----------------|-------|----------------------|---------------|------------|-----------------|
| Reference drawing(s)                                                        |                                                               | Line number                |                |       | Heat tracer number   |               |            | r               |
| Corrosive atmosphere?                                                       |                                                               | Sheath temp. limitation °C |                |       |                      | Panel         | numbei     | r               |
| Location                                                                    |                                                               | Circu                      | uit number     |       | Circuit amps/voltage |               |            | 9               |
| Heat tracer type                                                            |                                                               | Heat tra                   | cer model      |       |                      |               |            |                 |
| Heat tracer wattage u                                                       | nit length/voltage rating                                     | g                          | I              |       |                      |               |            | -               |
| Megohm mete                                                                 | er manufacturer/mode                                          | el                         | Voltage set    | tting |                      | Accuracy/f    | full scale | Э               |
| Megohm meter                                                                | date of last calibratior                                      | n                          |                |       |                      |               |            |                 |
| Multimete                                                                   | er manufacturer/mode                                          | el                         | Ohm set        | tting |                      | Accuracy/f    | full scale | Э               |
|                                                                             |                                                               | HEAT TR                    | ACER TES       | TING  | ì                    |               |            | -               |
| Test value/remarks                                                          |                                                               |                            | Date           |       |                      |               | Initials   | 5               |
| NOTE The minimum a d.c. recommen                                            | acceptable insulation i<br>ided for MI, 2 500 V c             |                            |                |       | eptable test vol     | tage is 500 \ | V d.c.Ho   | owever, 1 000 V |
| 1                                                                           |                                                               | Receipt of                 | material on    | reel  |                      |               |            |                 |
|                                                                             |                                                               | Contin                     | uity test on   | reel  |                      |               |            |                 |
|                                                                             |                                                               | Insulation resista         | nce test on    | reel  |                      |               |            |                 |
| 2 Pipi                                                                      | ng completed (approv                                          | val to start heat tra      | acer installat | tion) |                      |               |            |                 |
| 3                                                                           |                                                               | Continuity test            | after installa | tion  |                      |               |            |                 |
| 4 Heat tracer installed (approval to start thermal insulation installation) |                                                               |                            |                |       |                      |               |            |                 |
| Heat                                                                        | t tracer correctly insta                                      | Illed on pipe, vess        | el or equipn   | nent  |                      |               |            |                 |
| Heat tracer correctly installed at valves, pipe supports, other heat sinks  |                                                               |                            |                |       |                      |               |            |                 |
| Components correctly installed and terminated (power, tee-end seal)         |                                                               |                            |                |       |                      |               |            |                 |
| Installatio                                                                 | on agrees with supplie                                        | er's instructions an       | nd circuit de  | sign  |                      |               |            |                 |
| 5                                                                           | Therm                                                         | nal insulation instal      | llation comp   | olete |                      |               |            |                 |
|                                                                             | Cont                                                          | tinuity test after th      | ermal insula   | tion  |                      |               |            |                 |
|                                                                             | Insulation resis                                              | tance test after th        | ermal insula   | tion  |                      |               |            |                 |
| SYSTEM INSPECTED                                                            | ):                                                            |                            |                |       |                      |               |            |                 |
| 6                                                                           | Marking, ta                                                   | gging and identific        | cation comp    | olete |                      |               |            |                 |
| 7                                                                           |                                                               | Heat tracer eff            | ectively eart  | hed   |                      |               |            |                 |
| 8 Tempe                                                                     | rature controls proper                                        | rly installed and se       | et points ver  | ified |                      |               |            |                 |
| 9                                                                           | Circuit m                                                     | ionitoring devices         | correctly se   | t up  |                      |               |            |                 |
| 10                                                                          | 10 Junction boxes properly marked and closed                  |                            |                |       |                      |               |            |                 |
| 11 T                                                                        | 11 Thermal insulation weather tight (all penetrations sealed) |                            |                | aled) |                      |               |            |                 |
| 12 End seal                                                                 | s, covered splices ma                                         | arked on insulatior        | n outer clade  | ding  |                      |               |            |                 |
| 13                                                                          | 13 Control panels installed and comissioned                   |                            |                |       |                      |               |            |                 |
| 14                                                                          | Drawings                                                      | s, documentation           | marked as-     | built |                      |               |            |                 |
| Performed by:                                                               |                                                               |                            | Comp           | bany  |                      |               | Date       |                 |
| Witnessed by:                                                               |                                                               |                            | Comp           | bany  |                      |               | Date       |                 |
| Accepted by:                                                                |                                                               |                            | Comp           | bany  |                      |               | Date       |                 |
| Approved by:                                                                |                                                               |                            | Comp           | bany  |                      |               | Date       |                 |



## Maintenance

#### General

It is recommended that the maintenance schedule given in Table 3 should be undertaken each year. All maintenance activities should be recorded in a maintenance log (such as that shown in Table 3) and retained in the system documentation.

#### **Fault location**

Specialized methods of fault location are necessary to find faults in electric heat tracing systems covered by thermal insulation and metallic cladding, and advice should be sought from the electric heat tracing system designer. Most commonly, faults are caused by mechanical damage, corrosion, overheating or ingress of moisture.

#### **Fault rectification**

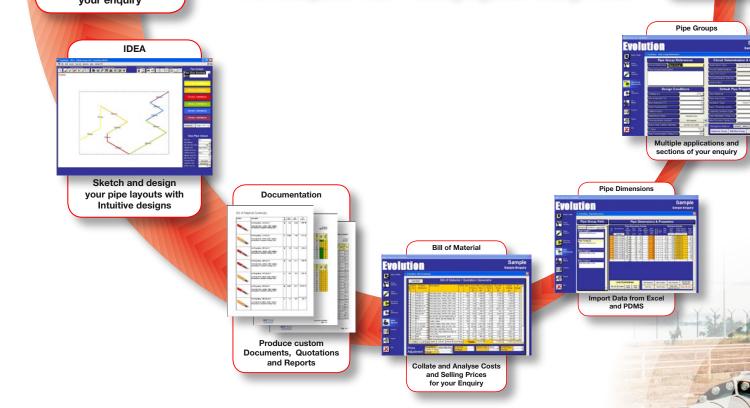
When the fault has been located, the defective component should be replaced or repaired. Those parts of the installation that have been disturbed should be checked in accordance with Table 2 and recorded in accordance with Table 3.










# Maintenance

# Table 3 – Maintenance schedule and log record

| Location system          |                          |       |               |       | Sys            | stem         |          |    | Refere | ence dr | awing(s   | S) |  |
|--------------------------|--------------------------|-------|---------------|-------|----------------|--------------|----------|----|--------|---------|-----------|----|--|
|                          |                          |       | C             | CIR   |                | RMATIO       | N        |    |        |         |           |    |  |
| Heat tracer number       |                          |       |               |       | Circuit le     | ngth         |          |    | Bre    | eaker p | anel nc   | ). |  |
| Power connection         |                          |       |               |       | Design vol     | tage         |          |    | Brea   | aker po | ole(s) no | ). |  |
| Tee connection           |                          | Re    | sidual curre  | ent p | protection (t  | type)        |          |    |        |         |           |    |  |
| Splice connection        |                          |       | Residua       | l cu  | irrent trip se | tting        |          |    |        |         |           |    |  |
| Process control ty       | ype I, II or III         |       |               |       | Heating        | controller t | ype      |    |        |         |           |    |  |
| Circui                   | cuit Monitoring YES / NO |       |               |       |                |              |          |    |        |         |           |    |  |
|                          |                          |       |               |       | VISUA          | <b>L</b>     |          |    |        |         |           |    |  |
| Panel no.                | Circuit no.              |       |               |       |                |              |          |    |        |         |           |    |  |
|                          | Date                     |       |               |       |                |              |          |    |        |         |           |    |  |
|                          | Initial                  |       |               |       |                |              |          |    |        |         |           |    |  |
| Therm                    | al insulation            |       | ·             |       |                | •            |          | •  |        |         |           |    |  |
| Damaged insulat          | ion/ lagging             |       |               |       |                |              |          |    |        |         |           |    |  |
| Water seal               | acceptable               |       |               |       |                |              |          |    |        |         |           |    |  |
| Insulation/lagg          | ing missing              |       |               |       |                |              |          |    |        |         |           |    |  |
| Presence                 | of moisture              |       |               |       |                |              |          |    |        |         |           |    |  |
| Heating system c         | omponents                |       | ·             |       |                |              |          |    |        |         |           |    |  |
| Enclosures, bo           | oxes sealed              |       |               |       |                |              |          |    |        |         |           |    |  |
| Presence                 | of moisture              |       |               |       |                |              |          |    |        |         |           |    |  |
| Signs                    | of corrosion             |       |               |       |                |              |          |    |        |         |           |    |  |
| Heat tracer lead dis     | scolouration             |       |               |       |                |              |          |    |        |         |           |    |  |
| Heating and/or high lim  | nit controller           |       |               |       |                |              |          | _  |        |         |           |    |  |
| Operati                  | ing properly             |       |               |       |                |              |          |    |        |         |           |    |  |
| Control                  | ler set point            |       |               |       |                |              |          |    |        |         |           |    |  |
|                          |                          |       |               |       | ELECTR         | ICAL         |          |    |        |         |           |    |  |
| Insulation resistance te | sting (bypass            | contr | oller if nece | essa  | ary)           |              |          |    |        |         |           |    |  |
|                          | Test voltage             |       |               |       |                |              |          |    |        |         |           |    |  |
| Megger                   | r value, MW              |       |               |       |                |              |          |    |        |         |           |    |  |
| Heat tracer sup          | oply voltage             |       |               |       |                |              |          |    |        |         |           |    |  |
| Value at po              | wer source               |       |               |       |                |              |          |    |        |         |           |    |  |
| Value at field           | connection               |       |               |       |                |              |          |    |        |         |           |    |  |
|                          |                          |       | Heat t        | rac   | er circuit     | current r    | eadi     | ng |        |         |           |    |  |
| Amps reading a           |                          |       |               |       |                |              |          |    |        |         |           |    |  |
| Amps reading a           |                          |       |               |       |                |              |          |    |        |         |           |    |  |
|                          | fault current            |       |               |       |                |              |          |    |        |         |           |    |  |
| Comments                 | and actions              |       |               |       |                |              |          |    |        |         |           |    |  |
| Performed by:            |                          |       |               |       |                | Company      | <u> </u> |    |        |         | Date      |    |  |
| Approved by:             | _                        |       |               |       |                | Company      |          |    |        |         | Date      |    |  |







**EVOLUTION – The Complete Design Tool** 



### Evolution – The Complete Heat Tracing System Design Suite

Heat Trace Ltd has taken it's 33 years of experience in design, manufacturing, installation and innovation and used it to produce an Evolutionary step forward in Heat Tracing Design.

All our years of acquired knowledge and unrivalled understanding of Heat Tracing systems have been used to develop the most advanced and complete Heat Tracing Software Design Suite.

Heat Trace's **EVOLUTION** Software has been designed and written by Heat Trace utilising our understanding of the way in which Heat Tracing enquiries and projects are received, designed and installed. Evolution was not written by a software company having only limited understanding and appreciation of heat tracing system design.

The software is of value to users, engineering houses and contractors alike. From their own line lists, they can produce heat tracing budgets and a simple shopping list of requirements. Alternatively, the software can be used to validate a supplier's bid.

The software includes an intuitive drawing package having AutoCAD compatibility. Isometric pipe layout drawings, which have traditionally required a high design input and involved large costs, may be produced quickly and **Evolution** will determine heat losses, heat tracer selections, bills of material, and the final installation drawings.

The following pages of this brochure give a flavour of what EVOLUTION is capable of and what Heat Trace's Innovation culture has meant to Heat Tracing design. It extends not only to our products but also to the support and services that we provide to our customers. Evolution differs in a number of fundamental ways from our competitor's software:

- Calculations and product selections are performed on all generic types of heat tracer: Parallel Self-Regulating, Parallel Constant Power and Series Resistance.
- Evolution can design systems for both Safe and Hazardous Areas, considering stabilised and temperature controlled designs.
- Heating applications such as Freeze Protection, Temperature Maintenance, Heat Raising, Long Pipes, Tanks and Vessels can all be calculated in a single piece of software.
- An enquiry entered into Evolution can be broken down into different sections or groups depending on the user's preferences. Individual bills of material can be produced for each group. This allows the user to break the quotation into different sections according to the format required.

For Example:

- The customer may wish that Plant Area 1 be itemised separately from Plant Area 2
- The user may wish to offer options for the customer to choose from.

This can now be done automatically under the same enquiry. The flexibility of the reports allows the user to present the quotation in an appropriate format.

- Large or small, simple or complex enquiries can be designed and quoted accurately, confidently, quickly and efficiently.
- Data is usually supplied in an electronic format. Whether typed into Microsoft Excel or exported from a Pipe Design Management System, it can be imported directly into Evolution. This saves time and eliminates data input errors.
- There are no messages requesting you contact the manufacturer's design engineer for advice. For many applications, there is no need for a design engineer at all.

Evolution empowers the user to design heat tracing systems with the knowledge that the system will be the safest system that works, and having the greatest commercial advantages.

• Evolution goes beyond engineering principles, calculations and product selections.

Evolution is firstly a piece of computer software. It is simple to use and does not require knowledge of heat tracing or electrical engineering. In the hands of a heat tracing engineer it becomes even more powerful and allows the design engineer to spend more time designing and less time on clerical activities.

Secondly the software has been written from a Customer Perspective, providing tools and applications to manage all the peripheral activities.

Page 65

### **EVOLUTION – The Complete Design Tool**

6



### A Customer's Perspective

Evolution has been written with our customers in mind. Unlike other software Evolution is not limited to calculations and product selection. It contains many programs to allow the user to consolidate all activities related to the preparation of designs, reports and quotations into a single piece of software.

Programs to manage customer and contact information, pricing structures, product stock records, graphical product libraries, and a document designer can all be used to minimise time spent producing quotations and to maximise productivity.

Evolution can also be tailored to meet the requirements of the user. The user can modify software defaults, manipulate how Evolution performs calculations and makes product selections, further reducing data entry and time spent preparing quotations.

Collectively these programs empower the user to design heat tracing systems and produce professional quotations all within a single piece of software. Product knowledge, catalogues, datasheets are no longer required. As a result, mistakes, time spent entering data and preparing quotations is substantially reduced and accuracy and productivity of expensive engineering resources are significantly increased.

#### Associates Database

The Associates Database allows the user to enter their customer addresses and contact details. The customer can then be selected from a drop down list when a new enquiry is entered. Address details will then be copied from the Associates Database into the enquiry, saving time and improving accuracy and data integrity. The address data can be edited as necessary.

| Comment Name                                                                                 | Contact Name            | Company Position                | Personal Tel No  | Personal Mob No |
|----------------------------------------------------------------------------------------------|-------------------------|---------------------------------|------------------|-----------------|
| Company Name Custometr No. 1<br>Address New Road<br>New Town<br>Cheshire<br>CH65 7CH         | Bob Willis<br>Anne Ford | Manager<br>Sales Administration | Presional Tel No | Personal Mcd No |
| General Teléphore No 01513002765<br>General Facsmile No 01513007888<br>Mobile No 01513007888 | Comment                 | s / Notes                       |                  |                 |
| E-mail Address abc@hotmail.com Associate Category                                            |                         |                                 |                  |                 |
|                                                                                              |                         |                                 |                  |                 |

#### **Pricing Structures**

The Associates Database can be extended further to include a pricing structure. *Pricing Structures* allow Evolution to determine the selling price for the products selected when the bill of material is compiled. This ensures that the correct prices are used and removes the need to enter prices for each quotation.

*Pricing Structures* can be simple or complex. Simple *Pricing Structures* take the form of Cost plus a percentage margin or a List Price less a percentage discount. Complex *Pricing Structures* allow the user to also add specific prices for individual products.

When a customer is selected from the Associates Database, the Pricing Structure is copied along with the address. The Pricing Structure can be modified for each individual enquiry.



#### **Product Stock Records**

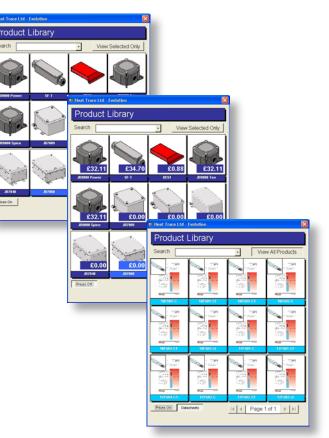
*Product Stock Records* allow the user to record Heat Trace products held in stock. Evolution is capable of importing stock data from most resource management or stock control systems.

Evolution can be instructed to design a heat tracing system using only cables that are currently in stock. This is particularly useful when quick delivery is required for the heat tracing system. It can also be beneficial when the user carries only a certain range of cables and wants the software to use those cables. If no solution exists from cables in stock then Evolution advises that no cable could be selected.

*Product Stock Records* can also be used to check against the bill of material to determine if the user has sufficient stock to supply the heat tracing system.






## A Customer's Perspective

#### **Product Libraries**

Evolution has a graphical *Product Library* that can be used to identify a particular product. A flexible search facility gives the user the ability to find the appropriate product quickly without the need for product knowledge.

Having identified the product, the user is only a click away from product datasheets, images, videos and literature. There is no longer the need to shuffle through catalogues and datasheets to find the information required.

Images, Videos, literature and articles, contained within Evolution, can be used to compile the user's own literature and documentation.



#### **Data Tables**

*Data Tables* of fluid materials, pipe sizes, insulation types can all be amended and added to by the user. This further empowers the user to use the software without reference to Heat Trace.

#### **Document Designer**

The *Document Designer* allows the setting up of templates for quotations. The templates are constructed on a "copy and paste" basis. The user enters a number of paragraphs in the text editor. Entering the text can be done by typing or copy/ pasting the text from the user's current quotations.

| II Heat Trace Ltd | - Evolution                                                                                                                                                                                                                                                                                                         |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Documen           | it Text Library                                                                                                                                                                                                                                                                                                     |
| Text ID           | 11 Text Category Quote Body Text Reference Quality System                                                                                                                                                                                                                                                           |
| Text Header       | Quality System                                                                                                                                                                                                                                                                                                      |
| the equipment     | Is an ISO 9001 accredited company and operates a Quality Management System commensurate with<br>and services provided. The Quality system operated by Heat Trace Linds opericitally incudes for the<br>management of sub-suppliers. All cables will undergo factory testing and inspection by Heat Trace Ltd<br>ch. |
| Finished          | <u>1</u> ▶ [1] ▶ # d 6                                                                                                                                                                                                                                                                                              |

The necessary paragraphs may then be selected in the *Document Designer* reports such as *Bills of Material* or other special text fields. The user can create as many quotation templates as required. A quotation template may be selected for a given enquiry. Evolution will do the rest, compiling and collating your quotation.

| Document<br>Designer       |       |          |       | nt Name Quote No 1 | ×          |
|----------------------------|-------|----------|-------|--------------------|------------|
| Address Details            | ;     | Heat     | Traci | Ltd                | <u>.</u>   |
| Document                   | Bo    | ody      | Т     | Associated D       | ocuments   |
| Text Paragraph             |       | Sequence |       | Document Ref       | Sequence 🔺 |
| Engineering Documentation  | •     | 1        | D     | cument One         | • 0        |
| Warranty Terms             | Ŀ     | 2        | 17    |                    | • •        |
| Quality System             | •     | 3        | 1 -   |                    |            |
| Packing                    | •     | 4        |       |                    |            |
| Bill of Material Summary   | •     | 5        |       |                    |            |
| Carriage                   | Ð     | 6        |       |                    |            |
| Terms & Conditions         | Ð     | 7        |       |                    |            |
| Special Quote Text         | •     | 8        |       |                    |            |
| Project Scope              | •     | 9        |       |                    |            |
| Insulation Summary By Pipe |       | 10       |       |                    |            |
| Pipe Size Summary By Pipe  | ( • ) | 11       |       |                    |            |
| Technical Calculations     | •     | 12       |       |                    |            |
| Temperature Control        | •     | 13       |       |                    |            |
| Bill of Material           | Ð     | 14       |       |                    |            |
| Finished                   |       |          | 1     | ĸ                  | ÷          |

In addition to the *Document Designer*, the user can also automatically generate a Microsoft Word document to use as a cover sheet for the quotation. The Word document is created with address, contact, reference numbers and enquiry titles already completed. The user simply adds additional text specific to the enquiry document.

Datasheets and user documents complete the document design package.



#### **General Principles**

Each Enquiry consists of sections: Enquiry Details, Design Selections, Heater Selections, Pipe Groups, Pipe Dimensions, Bill of Material and Quotation.

An Enquiry can have as many different pipe groups as required and each pipe group can have as many pipe line items dimensioned as necessary.

Enquiries and enquiry sections can be added to or amended at any time.

There is no practical limit to the number of enquiries, pipe groups and pipe line items that can be entered into Evolution.

Evolution is, generally speaking, a collection of databases with an interface to bind them together. The nature of this interface is that the user never needs to remember to press a button to save the data. The data is saved automatically as the user proceeds through the enquiry.

A backup facility allows the user to create small text files that contain the input data required to re-build an enquiry in the event of a disaster. Even deleting Evolution only requires the user to re-install the software and import backup files. Within a few minutes Evolution is back up and running. It is important to be disciplined and backup often. Evolution allows the user to backup any number of enquiries in a single operation.

#### **Enquiry Database**

The *Enquiry Database* manages all enquiries, allowing easy location and access to each. Enquiries are listed in descending date order so that the last one created appears at the top of the list. The list displays the main fields for identification and also displays the status and value of the enquiry. The information is useful for enquiry tracking and progressing.

|                        | New En       | quiry                  | EQU                                       | 015/07                           | Create Enqu         | iny                          | Auto-I<br>13 Enqu              |           | sted 🗚            |
|------------------------|--------------|------------------------|-------------------------------------------|----------------------------------|---------------------|------------------------------|--------------------------------|-----------|-------------------|
| Eng No/Per             | No Quete Ref | Date                   | Project Title                             | Customer Name                    | Customer Ref        | Engineer's Name              |                                | Due Date  | Value             |
| E0001467               |              | 24Jan07                |                                           | Default                          | Default             | Steve Royle                  | Received & L                   |           | 3.30              |
| E00013/07<br>E00012/07 |              | 24-Jan-07<br>24-Jan-07 |                                           | Default                          | Default<br>Certault | Stave Royle<br>Stave Royle   | Received & L/<br>Received & L/ |           | 0.00              |
| 122/0                  | 1294         |                        | Sample Evolary                            | Customer No.1                    | 122                 | Harold Rowley                | Received & Lr.                 |           | 0.00              |
| Drawing Test           |              | 27-Dec-06              |                                           | Default                          | Certault            | Stave Royle                  | Received & Lo                  |           | 0.00              |
| New Enguiry            |              | 05-Dec-06              | Default                                   | Customer No 1                    | Detaut              | Stave Royle                  | Received & Lo                  | 05-Dec-06 | 82,090.05         |
| BCHeat Raise           |              | 23-New-06              |                                           | Default                          | Certault            | Steve Royle                  | Received & L(                  |           | 0.00              |
| import Examp           |              |                        | Inport Example                            | Customer No 1                    | Detaut              | Stave Royle                  | Received & Lr                  |           | 2,172,140.5       |
| Sample                 | 01234        |                        | Sample Evolity                            | Customer No 1                    | /4812346            | Steve Royle                  |                                | 28-Jan-07 | 177,827.39        |
| 123/9<br>123/A         | 1294         |                        | Sampia Eliquiry Type B                    | Customer No 1                    | 120                 | Harold Rowley                | Received & Lr                  |           | 0.00              |
| 123/A                  | 1284 010149  |                        | Sample Enquiry A<br>Heat Tracing - Urumoi | Customer No 1<br>Heat Trace Kona | 123<br>NA           | Harold Rooley<br>Stave Royle | Received & L/<br>Received & L/ |           | 8.00<br>32.271.37 |
| 123                    | 1284         |                        | Sample Evolvy                             | Customer No.1                    | 123                 | Handd Rowley                 | Received & LC                  | 21-009-06 | 253 899 20        |
|                        |              |                        |                                           |                                  |                     |                              |                                |           |                   |
|                        |              |                        |                                           |                                  |                     |                              |                                |           |                   |
|                        |              |                        |                                           |                                  |                     |                              |                                |           |                   |
|                        | uguiry       | Copy Enqui             | RV Backup Eng                             | uiry Import Enquir               | V Delete E          | and a from                   | irv Search                     | Enmin     | / Tracking        |

#### **Enquiry Search**

The Enquiry Search function allows the user to search and filter out enquiries according to the content of specific fields. For example, the user can enter a customer name and the enquiry list will be filtered to display all enquires for the selected customer,

| Enquiry / Reference No |   | Areas               |                |
|------------------------|---|---------------------|----------------|
| Customer Name          | : | Agent's Name        |                |
|                        | - |                     |                |
| Enquiry Title          |   | Actioned By         |                |
|                        |   |                     |                |
| Customer Reference No  |   | Action Allocated To |                |
| Quote Reference        |   | Value From          | Value To       |
| Engineer's Name        |   | Action Date From    | Action Date To |
| Enquiry Group          |   | Category Search     |                |
|                        | - |                     |                |
| Enquiry Status         |   |                     |                |

again in descending date order, so that the most recent enquiries are at the top.

#### **Backup Enquiry**

It is important to backup data. The *Backup Enquiry* facility allows this to be done in Evolution.

The backup facility is also used when new releases of the software are installed. Simply backup all enquiries

| Select Enqu                                                                                                        | iry to Backup/E-mail                                                                                                                                                                                |  |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Enquiry No<br>import Exam<br>123/F<br>123/E<br>Sample<br>123/D<br>123/C<br>123/C<br>123/B<br>123/A<br>E1929<br>123 | Employ Title<br>Animoti Example<br>Enquiry F<br>Enquiry Sample Enquiry F<br>Sample Enquiry D<br>Sample Enquiry D<br>Sample Enquiry C<br>Sample Enquiry X<br>Heat Tracing - Urumqi<br>Sample Enquiry |  |

and when the new software is installed, the backup files can be imported.

An additional feature of *Backup Enquiry* is that the backup file can be e-mailed directly to another user.

This allows the user to get support from Heat Trace for an enquiry, or the user could send the file to a customer who also has a copy of Evolution, for review.

#### Import Enquiry

The *Import Enquiry* facility allows the user to import backup files, or to import an enquiry that has been sent to them by another user, as detailed above.

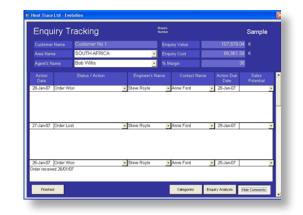
| II Heat Trace Lt | d - Evolution             |        |            | <b>X</b>      |
|------------------|---------------------------|--------|------------|---------------|
| Import E         | inquiry                   |        |            |               |
| Select Enqui     | ries to Import            |        |            |               |
| Enquiry No       | Enquiry Title             |        |            |               |
| E1929<br>mbm     | Heat Tracing -<br>Default | Urumqi |            |               |
|                  |                           |        |            |               |
|                  |                           |        |            |               |
|                  |                           |        |            |               |
|                  |                           |        |            |               |
|                  |                           |        |            |               |
|                  |                           |        |            |               |
|                  |                           |        |            |               |
| Import Enqui     | ry E-mail Eng.            | ity    | Select All | De-Select All |
| -                |                           |        |            |               |



### Enquiry Management

#### **Enquiry Tracking**

*Enquiry Tracking* allows the user to manage the progress of enquiries and analyse the content of enquiries.


|                |          | Customer No 1 |   |             | Eng          | uiry Value |    | 107,679            | 04 E               |    |
|----------------|----------|---------------|---|-------------|--------------|------------|----|--------------------|--------------------|----|
| Area Nar       | 10       | SOUTHAFRICA   |   |             | Enquiry Cost |            |    | 66,661             | 59 E               |    |
| Agent's N      | lame     | Bob Willis    |   |             | % Margin     |            | 38 |                    |                    |    |
| Action<br>Date |          |               |   |             |              |            |    | Action Due<br>Date | Sales<br>Potential |    |
| 28-Jan-07      | Order W  | ion .         | 1 | Steve Royle |              | Anne Ford  |    | 28-Jan-07          |                    | Ŀ, |
| 27-Jan-07      | Order Lo | ist.          |   | Steve Royle |              | Anne Ford  |    | 29-Jan-07          |                    |    |
| 26-Jan-07      | Order W  |               |   | Steve Royle |              | Anne Ford  |    | 25-Jan-07          |                    |    |
|                | Chase P  |               |   | Steve Royle |              | Anne Ford  |    | 26-Jan-07          | Very Good          |    |
| 10-Jan-07      | Quotatio |               |   | Steve Royle |              | Anne Ford  |    | 19-Jan-07          | Good               |    |
|                |          | g Quotation   |   | Steve Royle |              | Anne Ford  |    | 12-Jan-07          | Fair               |    |
|                | Receiver | d & Logged    |   | Steve Royle |              | Anne Ford  |    | 12-Jan-07          |                    |    |
| 18-Jan-07      |          |               |   |             |              |            |    |                    |                    | 1  |
|                | a        |               |   |             |              | Categories |    | iry Analysis       | Show Connerts      |    |

Enquiries can be allocated to an *Area* and to an agent or salesman. In Evolution, *Area* relates to countries of the world but the user can define the *Areas*. The *Areas* could be changed to represent regions of a country, or a type of enquiry.

| Action<br>Date | Status / Action       | Engineer's Name | Contact Name | 9    | Action Due<br>Date | Sales<br>Potential |   |
|----------------|-----------------------|-----------------|--------------|------|--------------------|--------------------|---|
| 28-Jan-07      | Order Won -           | Steve Royle -   | Anne Ford    | -    | 28-Jan-07          |                    |   |
| 27-Jan-07      | Order Lost ·          | Steve Royle •   | Anne Ford    |      | 29-Jan-07          |                    | * |
| 26-Jan-07      | Order Won             | Steve Royle •   | Anne Ford    | -    | 25-Jan-07          |                    | • |
| 19-Jan-07      | Chase Progress .      | Steve Royle -   | Anne Ford    | +    | 26-Jan-07          | Very Good          |   |
| 10-Jan-07      | Quotation Issued      | Steve Royle -   | Anne Ford    |      | 19-Jan-07          | Good               | - |
| 18-Dec-06      | Preparing Quotation - | Steve Royle -   | Anne Ford    | +    | 12-Jan-07          | Fair               | • |
| 12-Dec-06      | Received & Logged     | Steve Royle     | Anne Ford    | *    | 12-Jan-07          |                    | × |
| 18-Jan-07      | •                     | •               |              | •    |                    |                    | • |
|                |                       |                 |              |      |                    |                    |   |
| Finished       | ·                     |                 | Categories   | Enqu | iry Analysis       | Show Comments      |   |

The example above shows various actions recorded against the enquiry, allowing the user to know the status of each enquiry, when the next action should be completed and a sales potential factor.

Evolution contains various status/admin items in the progress of an enquiry. The user can change these to tailor *Enquiry Tracking*. The user can record comments against each status/action to detail conversations with the customer or actions required.



| 🛱 Heat Trace Ltd - Evolution |            |
|------------------------------|------------|
| Enquiry Tracking - C         | ategories  |
| Category                     |            |
| Casutic Soda                 | -          |
| Longline                     | •          |
| Tanks                        | •          |
| Water Pipes                  | •          |
|                              | •          |
|                              |            |
|                              |            |
|                              |            |
| Finished                     | Categories |
|                              |            |

Adding categories to your enquiry tracking allows the user to further analyse enquiries. Categories group similar enquiries together. All categories are defined by the user.

The user can produce various reports detailing the status of enquiries, critical dates, extent of work and analysing the content and value of the enquiries.

The user can also analyse the success or failure to convert enquiries into orders. Collectively reports can be used to determine which enquiries the user is most likely to win and therefore allocate resource.

| B Heat Trace Ltd - Evolution 🛛 🛛 🔀 |          |  |  |  |  |  |  |  |
|------------------------------------|----------|--|--|--|--|--|--|--|
| Enquiry Analysis                   |          |  |  |  |  |  |  |  |
| Total Time                         | 03:54:55 |  |  |  |  |  |  |  |
| Enquiry Details & Settings         | 01:11:20 |  |  |  |  |  |  |  |
| Design Selections                  | 00:07:52 |  |  |  |  |  |  |  |
| Heater Selections                  | 00:10:18 |  |  |  |  |  |  |  |
| Pipe Groups                        | 00:13:55 |  |  |  |  |  |  |  |
| Pipe Dimensions                    | 00:45:39 |  |  |  |  |  |  |  |
| Bill of Material                   | 00:58:02 |  |  |  |  |  |  |  |
| Quotations                         | 00:04:27 |  |  |  |  |  |  |  |
|                                    | 00:23:22 |  |  |  |  |  |  |  |
| Finished                           |          |  |  |  |  |  |  |  |



# Enquiry Details

In the *Enquiry Details* screen the user can enter details of the enquiry such as reference numbers and customer details. The customer details can be selected from a drop down list of customers from the *Associates Database.* 

This form also contains an *Enquiry Status* field that allows the user to track his enquiry by selecting a status such as Order Won, Order Lost, Pending and follow up.

| Evolu                   | ution                |                                              |                                   |                                 |
|-------------------------|----------------------|----------------------------------------------|-----------------------------------|---------------------------------|
| Enquiry Details         | Lock Enquiry Changes |                                              | Enquiry Details                   |                                 |
| Design                  | Enquiry No/Ref No    | Sample                                       | Enquiry Title                     |                                 |
| Selections              | Enquiry Date         | 15-Nov-06                                    | Sample Enquiry                    |                                 |
| - Hester                | Engineer's Name      | Steve Royle                                  |                                   |                                 |
| Selectors               | Quote Reference      | Q1234                                        | Enquiry Scope                     |                                 |
|                         | Customer Name        | Customer No 1                                |                                   |                                 |
| Ppe Group<br>References | Customer Contact     | Bob Willis                                   |                                   | I                               |
| Feferences              | Customer Ref No      | AB12345                                      |                                   | I                               |
| Pipe<br>Dimensions      | Customer Address     | New Road<br>New Town<br>Cheshire<br>CH65 7GH | Comments/Notes                    |                                 |
| Mercial                 |                      |                                              |                                   |                                 |
| Outsion                 | Post Code            |                                              |                                   | I                               |
|                         | Telephone No         | 01513002765                                  |                                   | I                               |
| Reports                 | Facsimile            | 01513007888                                  |                                   | I                               |
| <b>N</b>                | E-mail Address       | abc@hotmail.com                              |                                   | I                               |
|                         | Status / Action      | Order Won                                    |                                   |                                 |
| κ.                      | Action Due Date      |                                              | Enguiny Tracking Enguiny Settings | Seling Prices Add Customer Data |

#### **Selling Price Structures**

If the customer has been selected from the drop down list then the *Pricing Structure* for that customer will have been added to this enquiry.



| 🖽 Customer Se                 | lling Prices 🛛 🔀                                     |
|-------------------------------|------------------------------------------------------|
| Enquiry S                     | Selling Prices                                       |
| Pricing Method<br>Cost Plus % | Margin 🔹                                             |
| % Margin 30                   | Use Special Selling Prices<br>Exclude Special Prices |
| Finished                      | Special Prices                                       |

The *Pricing Structure* can be individually set for each enquiry. Modifications are applied only to the individual enquiry.

#### **Enquiry Settings**

The *Enquiry Settings* screen allows you to choose the units of measure for your pipe data. The software allows the use of various units of measure:

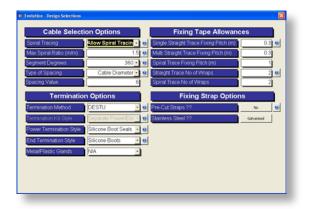
| Property             | Options                                         |
|----------------------|-------------------------------------------------|
| Temperature          | Degrees Celsius (°C)<br>Degrees Fahrenheit (°F) |
| Length               | Metres (m)<br>Feet (ft)                         |
| Output or Heat Loss  | Watts/Metre (W/m)<br>Watts/Foot (W/ft)          |
| Insulation Thickness | Millimetres (mm)<br>Inches ("ins)               |
| Pipe Size            | Millimetres (mm)<br>Inches ("ins)               |

| B Heat Trace Ltd - Ev | Votution    |      |                  |                 |
|-----------------------|-------------|------|------------------|-----------------|
| Enquiry Setti         | ngs         |      | Enquiry No       | Sample          |
| Enquiry Units of M    | leasure     |      |                  |                 |
| Length of Pipe/Cable  | Metres      | -    | Temperature      | Celsius 🗸       |
| Heat Losses           | Watts/Metre | •    | Pipe Maintain T  | emperature      |
| Pipe Sizes            | Millimetres | -    |                  | ess Temperature |
| Insulation Thickness  | Millimetres | •    | Critical Process |                 |
|                       |             |      | Air Temperature  |                 |
| Enquiry Currencie     | S           |      |                  |                 |
| Costs Currency Type   | Sterling    | -    |                  |                 |
| Costs Exchange Rate   | e           | 1    |                  |                 |
| Currency Type         | Sterling    | -    |                  |                 |
| Exchange Rate         |             | 1.00 |                  | Finished        |

The user can use any combination of options. Users can also change settings at any time. If the pipe length was entered

as metres, but it should have been feet, then simply change the unit of measure and you can choose whether Evolution converts all the numbers you have entered.

| Enquiry Units of Measure |             |   |  |
|--------------------------|-------------|---|--|
| Length of Pipe/Cable     | Metres      | • |  |
| Heat Losses              | Watts/Metre | • |  |
| Pipe Sizes               | Millimetres | • |  |
| Insulation Thickness     | Millimetres | • |  |


| Enquiry Currencies  | 6       |
|---------------------|---------|
| Costs Currency Type | Euros 🗸 |
| Costs Exchange Rate | 1       |
| Currency Type       | Euros 🗸 |
| Exchange Rate       | 1.00    |
|                     |         |

Enquiry Settings also allows the user to change the currency type used for costs and selling prices. The user can then set the exchange rates to be used for this enquiry.



## **Design Selections**

The *Design Selections* screen allows the user to influence how Evolution determines which products and what quantity of product are calculated.



#### For example the user can:

- Choose whether cables are to be spiral traced around pipes or straight traced.
- Select the preferred termination method: Standard, DESTU or StripFree.



• Select fixing methods and calculation allowances

These options significantly increase the flexibility of the design, allowing the user to manipulate the system design determined by Evolution.

#### **Cable Selection Options**

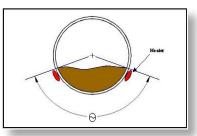
Cable Selection Options allows the user to define for this enquiry how cable can be calculated and fitted to the piping system.

| Cable Selection Options |  |  |
|-------------------------|--|--|
| Allow Spiral Tracin 🔹 🥹 |  |  |
| 1.5 🥑                   |  |  |
| 360 - 🥑                 |  |  |
| Cable Diameter 🔹 🥑      |  |  |
| 6                       |  |  |
|                         |  |  |

#### **Spiral Tracing**

The term "*Spiral Tracing*" refers to the method in which the heating tape is applied to the pipe.




#### **Maximum Spiral Ratio**

The user can set a *Maximum Spiral Ratio*. Evolution calculates the spiral ratio required. If this exceeds the *Maximum Spiral Ratio*, then Evolution reverts to a Straight Traced method using multiple tracers.

#### **Segment Degrees**

The Segment Degrees option is used to assist Evolution in the cable selection process and ensure that a practical solution is reached.

Often, heater cables are applied to the lower section of the pipe to ensure that heat is concentrated in the area where the process fluid is likely to be present.



The Segment Degrees option dictates the area that is available for positioning the heaters. Increasing the Segment Degrees value will allow more heaters to be applied to the pipe. Conversely, the Segment Degrees value can be reduced to force Evolution to select less runs of a cable with a higher power output and a more practical installation solution.

In both the Spiral Ratio and the *Segment Degrees* option, Evolution has an inbuilt override that will not allow a heater to be positioned on a pipe too close to another heater. Irrespective of the user's selections, this override will be enforced to ensure the design is a <u>"safe system that works"</u>.

Page 71

**EVOLUTION – Enquiry Modelling** 



## Heater Selection

The *Heater Selection* screen allows the user to restrict or influence which cables are selected. Evolution selects a cable based primarily on a <u>"safe system that works"</u> having the least cost per metre of pipe to provide the required heat output.

| Method of Sele                                                    | ction                                                                                        | Sele                                             | ection Priorities                                 |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|
| Full Cable Select     Select Only From     Manual Selection       | n Stock                                                                                      | Self-Reg<br>Constant<br>Longline<br>Change Price | Wattage 2.                                        |
| <ul> <li>Least Cost Price</li> <li>Least Selling Price</li> </ul> |                                                                                              | Approved Cables                                  |                                                   |
| Cable Styles<br>eff-Regulating<br>onstant Wattage                 | Produc<br>AHT<br>EMTS<br>FSM<br>FSLE<br>FSR<br>FSE<br>FSE<br>FSE<br>FSP<br>FSP<br>FSP<br>FSS | t Family                                         | Approval Body<br>ATEX<br>CSA<br>FM<br>SEMKO<br>UL |

#### **Method of Selection**

The user can choose one of the following options:



- **Full Cable Selection** Evolution will choose the best solution from all cables.
- Select Only From Stock Evolution will choose the best solution from the cables listed in the stock records for the user.
- Manual Selection The user can now specify particular product styles or families that Evolution can choose from.

The final selection of a heater is based upon cost. The user can choose to base this cost on the users cost price or the selected customers selling price.

#### **Selection Priorities**

Selection Priorities are used to enforce Heat Trace's philosophy of using a <u>"safe system that works"</u>. This often results in selecting a self-regulating heat tracer as these are mostly inherently temperature safe. An advantage is that requiring fewer temperature controllers / heater circuits leads to a more competitive quotation.

Evolution is pre-set with Parallel Self-Regulating as priority 1 and Parallel Constant Power as priority 2. Thus Evolution will select a self-regulating cable solution first. If one doesn't exist, then it will select a constant power solution before considering the cost per metre of pipe.

#### **Approved Cables**

If the heating cables must carry a specific approval, then the user selects this option to specify the *Approval Body*. Evolution will now only select cables that are approved by the selected *Approval Body*.



This option saves the user a lot of time looking through Heat Trace's extensive

product approvals to determine if the cable is approved. This ensures that unapproved products are not selected.



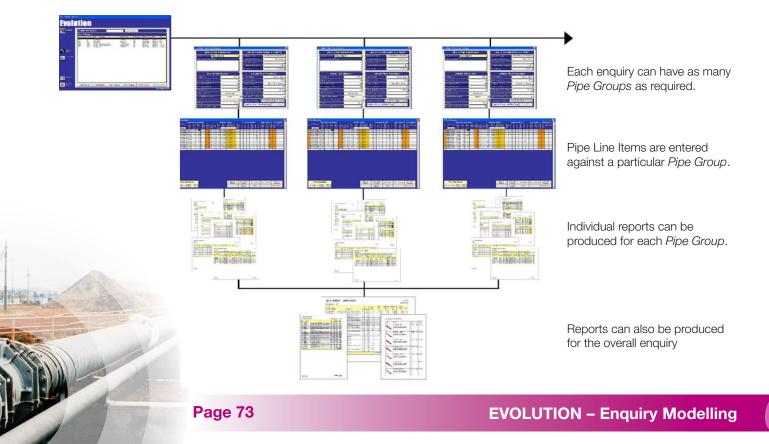


### Pipe Groups

*Pipe Groups* allows the user to split the enquiry into different sections. Each section can then have different applications parameters or methods of circuit calculation.



There may be various reasons for splitting an enquiry and it is at the user's discretion to split it in any way he chooses. Typical reasons for doing this are:


- The voltage to be used for calculations and product selections is set at the group level. Having more groups allows the user to have different voltages in the same enquiry.
- The enquiry may consist of both a Hazardous Area section and a Safe area section. It is good practice to separate the two areas. The enquiry may also consist of Hazardous areas with different T-Classes. A new group must be created for each T-Class as this is set at group level.

- Different applications such as Temperature Maintenance, Heat Raise and Tanks are set at group level. So if the enquiry consists of both Heat Raise and Temperature Maintenance, then a group must be created for each.
- The enquiry may specify, or the user may wish to split the quotation and bill of material into different areas of the plant. A group could be created for each area and then reports will present the data broken into these groups.
- The user may wish to provide different options for the customer. For instance, an option A using self-regulating heat tracers and an option B for constant power heat tracers. Setting up two groups named Option A and Option B will allow this to be done.

### Pipe groups allows the user to do the following:

- To keep all heat tracing applications, voltages, T-class variations etc, for the same enquiry in one piece of software and under the same enquiry reference.
- To produce infinitely flexible quotations and reports.
- To analyse requirements for different parts of the enquiry or areas of the plant both separately and collectively, without any additional work.
- To manage large amounts of input data by breaking it down into groups. This will improve accuracy in the first instance and make it easier to check data input.

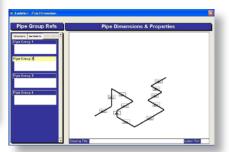
*Pipe Groups* sets Evolution above it's competition for flexibility, ease of use and efficient use of resource.





# Pipe Dimensions - The Engine Room

The *Pipe Dimensions* screen is the engine room of Evolution. It is where the user enters the details of each pipe to be temperature maintained, heat raised or each tank to be heated and so on.


The *Pipe Groups* are listed on the left and the user can select a group to display the pipe or tank data for that group.



When a line item of pipe data is added or edited Evolution performs numerous calculations to determine the best cable solution according to the user's selections. Evolution calculates for all possible heaters and selects the most appropriate in terms of safety and cost.



The *Pipe Groups* are listed on the left and the user can select a group to display the pipe or tank data for that group. The *Pipe Layout's* button toggles between the dimension data screen and the *Pipe Layout* screen.



#### **Manual Heater Selection**

When Evolution selects the most appropriate cable, it determines, where possible, a solution for all cables selected in the Heater Selections section of the enquiry. All these solutions can be viewed by double-clicking the heater selection field. The user can override Evolution's selection and choose a different cable.

| Full List of                                                                    |                                        | uiry & Pipe E |                     |                              |          |
|---------------------------------------------------------------------------------|----------------------------------------|---------------|---------------------|------------------------------|----------|
|                                                                                 |                                        |               | Sample              | Heat Loss                    | 6.70 W/m |
| Available Heaters                                                               | Line                                   |               | Pipe Group 2        | Maintain Temp                | 5 °C     |
|                                                                                 | Pipe                                   | Reference     | DEMO-A2-#001        | Length of Pipe               | 15.000 m |
| 17FSE2-CF                                                                       | • Output @ Rps Temp                    | 17.63 W/m     | Max Energieed Temp  | 80 °C Cost / Metre           | £5.24    |
| reezstop Extra, 17W/m, 230V, braided, fluoropolymer                             | Length of Heater                       | 1.000 m       | Mex Withstand Temp  | 100 °C Heater                |          |
| weriacket Heating Cable                                                         | Spiral Ratio                           | 1.000         | Minimum Bend Rad    | 30. mm of Pipe               | £5.24    |
| ,                                                                               | Meximum Pipe Tempe                     | rature        | 57 °C               | Stabalized Design            | No       |
|                                                                                 |                                        |               |                     |                              |          |
| 31FSE2-CF                                                                       | <ul> <li>Output @ Pipe Temp</li> </ul> |               | Max Energised Temp  | 80 °C Cost / Metre<br>Heater | £5.65    |
| reezstop Extra, 31W/m, 230V, braided, fluoropolymer                             | Length of Heater                       |               | Mex Withstand Temp  | 100 °C Cost /Metre           | £5.65    |
| werjacket Heating Cable                                                         | Spiral Ratio                           | 1.000         | Minimum Bend Rad    | 30, mm of Pipe               | £5.65    |
|                                                                                 | Movimum Pipe Tempe                     | rature        | 72 °C               | Stabalised Design            | No       |
|                                                                                 | -                                      | _             |                     |                              | _        |
| 45FSEW2-CF                                                                      | <ul> <li>Output @ Pipe Temp</li> </ul> |               | Mex Energised Temp  | 80 °C Cost / Metre           | £5.84    |
| reezstop Extra, 45W/m, 230V, braided, fluoropolymer                             | Length of Heater                       |               | Mex Wehstand Temp   |                              | £5.84    |
| werjacket Heating Cable                                                         | Spiral Ratio                           |               |                     | 30. mm of Pipe               |          |
|                                                                                 | Maximum Pipe Tampe                     | rature        | 78 °C               | Stabalised Design            | No       |
| 00505140.05                                                                     | · Output @ Fire Tame                   | 82.45 M/m     | Mex Energized Terro | 80 °C Cost / Metre           | £6.07    |
| 60FSEW2-CF                                                                      | Length of Heater                       |               | Mex Withstand Temp  | 100 °C Hester                | 20.07    |
| Freezstop Extra, 60W/m, 230V, braided, fluoropolymer<br>werjacket Heating Cable | fairal Ratio                           |               |                     | 30. mm of Pipe               | £6.07    |
| wegacket neating cape                                                           | Meximum Pipe Tempe                     |               |                     | Statution Decision           | No       |
|                                                                                 |                                        |               | 00 0                | and the second               | 140      |

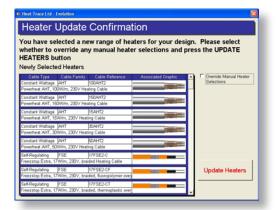
The user may wish to do this for a number of reasons. Evolution differs from other software packages in that it can be done easily. Evolution will make all the adjustments necessary, for the user's selected cable. Evolution highlights manual selections, identifying those lines that have been overridden.

### **Line Summaries**

A number of *Line Summaries* are available at any time by clicking the *Line Summaries*' buttons. *Line Summaries* summarise pipe size, insulation type, insulation thickness, heater selections and heater quantities.

| Pipe Size Summary         Volume in the family in the second                                                                     |                                                                                                                         | Dino C        | izo Cumi          | 200          | 1       | Tip,           | lation Material | Phpe       | Material | Pipe Nominal<br>Dore (mm) | Thick (19 |                |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|--------------|---------|----------------|-----------------|------------|----------|---------------------------|-----------|----------------|--|
| Pipe Material         Pipe Normal         Total Length           Bore (mm)         Steel         25         Steel         Stee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                         | Pipe S        | ize Sum           | nary         |         |                |                 |            |          |                           |           |                |  |
| Box (mm)         (m)           aton Steel         25         126           aton Steel         50         126           aton Steel         50         126           aton Steel         100         126           aton Steel         100         126           aton Steel         100         126           aton Steel         100         126           aton Steel         200         126           aton Steel         200         126           aton Steel         200         126           Aton Steel         200         135           aton Steel         200         137.0           Tester Reference         Or of Heater Requirements By Line Summary         135           136.0         201         156           137.0         136         27.6           137.0         135         156.0           138.0         27.5         136.0         20           156.5         157.5         136.0         20         156.0           157.5         136.0         20         156.0         136.0         27.6           158.5         2.5         136.0         27.6         136.0 <t< td=""><td>Pipel</td><td>Asterial</td><td>Pipe Nomi</td><td>nal TotalLeo</td><td>with</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pipel                                                                                                                   | Asterial      | Pipe Nomi         | nal TotalLeo | with    |                |                 |            |          |                           |           |                |  |
| Back of Steel         So         Table         Down Fite Sector         Set of Steel         20 mm         40 mm         99 col           attorn Steel         100         C) best fine Ltd         Fore Fore Fore Fore Fore Fore Fore Fore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         | ridgerige     |                   |              |         |                |                 |            |          |                           |           |                |  |
| attorn Steel         30         1.8.8           attorn Steel         100         C Jeat Trace Ltd : Trace Ltd : Tradeation         X           attorn Steel         100         C Jeat Trace Ltd : Trace Ltd : Tradeation         X           Heater Requirements By Line Summary         Line Steel         000 (156)         1155         125.7         126.0         116.0         20.0         1155         127.6         1150         126.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0         20.0         116.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | arbon Ste                                                                                                               | el            | 25                | 2            | 4.0     |                |                 |            |          |                           |           |                |  |
| atton Steel         150         Plast Fract L2 Letation         Plast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | arbon Ste                                                                                                               | el            | 50                | 13           | 8.0     | Glass P        | ibre Section    | Certon Ste | el       | 200 mm                    | 40 mm     | 89.000         |  |
| attor Steel         150           attor Steel         200           Heater Requirements By Line Summary           Line         Heater Reference           105         552.05           1155         155.05           1155         155.05           1155         155.05           1155         155.05           1155         155.05           1155         155.05           1155         155.05           1155         155.05           1155         155.05           1155         155.05           1155         155.05           1155         155.05           1155         155.05           1155         155.05           1155         155.05           1155         155.05           1155         155.05           1155         155.05           1155         155.05           1155         155.05           1155         155.05           1155         155.05           1155         155.05           1155         155.05           1155         155.05           1155         155.05      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | arbon Ste                                                                                                               | el            | 100               |              |         |                |                 |            |          |                           |           | _              |  |
| atton Steel         200         Heater Requirements By Line Summary           Line         Heater Reference         Oxy of Heater<br>for Fixer (m)         Total Cuartity<br>of Heater<br>for Fixer (m)           Heater Requirements Summary         Heater Reference         Oxy of Heater<br>for Fixer (m)         Total Cuartity<br>of Fixer (m)         Total Cuartity<br>of Heater<br>for Fixer (m)           Heater Reference         Oxy of Heater<br>for Fixer (m)         Oxy of Heater<br>for Fixer (m)         Total Cuartity<br>of Fixer (m)         Total Cuartity<br>of Fixer (m)           Heater Reference         Oxy of Heater<br>for Fixer (m)         Oxy of Heater<br>for Fixer (m)         Total Cuartity<br>fixer (m)         Total Cuartity<br>fixer (m)           Heater Reference         Oxy of Heater<br>for Fixer (m)         Oxy of Heater<br>for Fixer (m)         Total Cuartity<br>fixer (m)         Total Cuartity<br>fixer (m)           Fixer (m)         Total Cuartity<br>fixer (m)         Oxy of Heater<br>fixer (m)         Total Cuartity<br>fixer (m)         Total Cuartity<br>fixer (m)         Total Cuartity<br>fixer (m)           Fixer (m)         Total (m)         Oxy of Heater<br>fixer (m)         Total Cuartity<br>fixer (m)         Total Cuartity<br>fixer (m)         Total (m)           Fixer (m)         Total (m)         Oxy of Heater<br>fixer (m)         Total (m)         Total (m)           Fixer (m) </td <td>arbon Ste</td> <td>el.</td> <td>150</td> <td></td> <td>Heat Tr</td> <td>ace Ltd - Evol</td> <td>ution</td> <td></td> <td></td> <td></td> <td></td> <td>2</td>                                                                                                                                                                                                                                                                                                                                                                                         | arbon Ste                                                                                                               | el.           | 150               |              | Heat Tr | ace Ltd - Evol | ution           |            |          |                           |           | 2              |  |
| Printed         Caster record reference<br>No         Op of Heater<br>Printed         Op of Printed<br>Printed         Op of Printed<br>Printed         Op of Heater<br>Printed         Op of Printed<br>Printed         Op of Printed<br>Printed<                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                         |               |                   |              |         | Heel           | or Dogu         | iromo      | te Bu    | Line Cu                   |           |                |  |
| No         fc Pace //<br>1         for Pace //<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                | anoon ote                                                                                                               | -01           | 200               | _            |         | neal           | lei Requ        | liemer     | its by   | Line Su                   | mmai      | У              |  |
| No         fc Pac (n)         fc Equipment (n)         of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                         |               |                   | 1            | Line    | Heater         | Reference       | ON d       | Heater   | Oty of He                 | ater      | Total Quantity |  |
| E fact face Lfd         Levelation           Finisher           Finisher <td colsp<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <td></td> |               |                   |              |         |                |                 |            |          |                           |           |                |  |
| Printer         Heater Requirements Summary         138.0         20         166.0           Heater Reterence         Org of Heater<br>for Equipment for Equipment of Heater (m)<br>15FSS2-CF         Total Quark (m)<br>for Equipment of Heater (m)<br>15FSS2-CF         Total Quark (m)<br>for Equipment of Heater (m)<br>15FSS2-CF         Total Quark (m)<br>for Equipment of Heater (m)<br>145:55SS2-CF         Total Quark (m)<br>for Equipment of Heater (m)<br>145:55SS2-CF         Total Quark (m)<br>for Equipment of Heater (m)<br>145:55SS2-CF         Total Quark (m)<br>for Equipment of Heater (m) |                                                                                                                         |               |                   |              | 1       | 15FSS2-0       | F               |            | 187.0    |                           | 29.5      | 216.5          |  |
| Heater Requirements Summary           Heater Reference         Cry of Heater<br>for Pipe (m)         Total Ousretry<br>of Espenze         116.8         2.03         140.1           197552.CF         1870         20         216.6         137.2         225.0         167.2         175.9         177.0         20         16.6         137.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         177.0         145.0         145.0         145.0         145.0         145.0         145.0         145.0         145.0         145.0         145.0         145.0         145.0         145.0         145.0         145.0         145.0         145.0         145.0         145.0         145.0         145.0         145.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                         | -             |                   |              |         |                | -               | -          | 54.0     |                           | 13.5      | 67.5           |  |
| Heater Requirements Summary           Heater Reference         Org of heater<br>for Pipe (m)         Org of heater<br>of Pipe (m)         Org of heater<br>of Heater Net<br>of Pipe (m)         Org of heater<br>for Pipe (m)         Org of he                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                         | El Heat Trace | e Ltd - Evolution |              |         |                |                 | 8          | 136.0    |                           | 20        | 156.0          |  |
| Heater Paterence         Op of Heater         Op of Heater         Total Countly           19FSS2.CF         187 00         182         216         114.2         13.8         127.8           19FSS2.CF         187 00         182         216.5         114.2         13.8         127.8           19FSP2.CT         27.0         3.5         30.5         66.0         13         79.0           59FSS2.CF         410.0         49.5         45.9         45.0         4.5         49.5           60FSEV2.CF         45.0         4.5         49.5         30.7         288.0         4.5         49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                         |               | Heate             | Requirem     | ente    | Summar         | v               | - î        | 116.8    |                           |           | 140.1          |  |
| Heater Peterence         Ory of Heater         Ory of Heater         Total Quarket           11FSS2.CF         11F70         1200         210.5           14FSS2.CF         127.0         3.5         30.5           14FSS2.CF         120.0         240.0         152.0           14FSS2.CF         120.0         4.0         152.0           14FSS2.CF         120.0         4.0         152.0           14FSS2.CF         120.0         4.0         152.0           14FSS2.CF         120.0         4.9.5         459.5           06FSL2.NF         231.0         37.0         268.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                         |               | Tieate            | rtequiren    | ento .  | Gamma          | ,               |            |          |                           |           |                |  |
| Finisher         for Propering         for Lagometic (m)         of Heador                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                         | Heater F      | Reference         |              |         |                |                 |            |          |                           |           |                |  |
| Feided         11% SS2.CP         187 0         200         216 5         66.0         13         79.0           44F SEV/2.CF         122.0         24.0         152.0         62.0         11         73.0           56F SS2.CF         410.0         49.5         459.5         45.0         4.5         49.5           90F SU2.NF         231.0         37.0         268.0         1         1         73.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                         |               |                   | for Pipe (m) | for Eq. |                | of Heater (     | m)         |          |                           |           |                |  |
| ITFSP2/CT         270         35         305           46FSEW2/CF         1200         240         1520           56FSS2/CF         4100         495         4595           56FSEW2/CF         460         4.5         495           30FSU2/F         2310         3770         2680         45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Einishad                                                                                                                | 15FSS2-C      | F                 | 187          | 0       | 29.5           |                 | 216.5      |          |                           |           |                |  |
| 49-5EV/2-CF 1/2:0 240 1520<br>56F552CF 4100 495 4595<br>56F5EV/2-CF 450 445 495<br>30F5U/2:NF 2310 37.0 2680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rinisheo                                                                                                                | 17FSP2-C      | T                 | 27           | 0       | 3.5            |                 | 30.5       |          |                           |           |                |  |
| 067552/07<br>067552/20<br>0675U2NF 2310 370 2680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                         | 45FSEW2       | CF                | 128          | 0       | 24.0           |                 | 152.0      |          |                           |           |                |  |
| 906FSU2AF 2810 37.0 288.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                         | 55FSS2-C      | F                 | 410          | 0       | 49.5           | -               | 159.5      | 45.0     |                           | 4.5       | 49.5           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                         | 60FSEW2       | CF                | 45           | 0       | 4.5            |                 | 49.5       |          |                           |           |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                         | 90FSU2-N      | F                 | 231          | 0       | 37.0           |                 | 268.0      |          |                           |           |                |  |
| Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                         |               |                   |              |         |                |                 |            |          |                           |           | 5              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                         | Finished      | -1                |              |         |                |                 |            |          |                           |           |                |  |

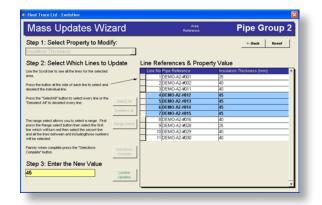



### Pipe Dimensions – The Engine Room

#### **Data Import Wizard**

The *Data Import Wizard* allows data to be imported directly into Evolution. Data can be imported from most Pipe Design Management Systems (PDMS). The order and format of the data is irrelevant as the *Data Import Wizard* validates and arranges the imported data for you.

|                   | ect a property i<br>orted list that the<br>First Row Tile |                   | he right by click<br>ents. | ing it w | th the no    | suse. Then se | slect the column | of the   | -                     | Click to Select a<br>Property Name                      |
|-------------------|-----------------------------------------------------------|-------------------|----------------------------|----------|--------------|---------------|------------------|----------|-----------------------|---------------------------------------------------------|
| Pipe<br>Reference | B                                                         | Pipe<br>Length(m) | D                          |          | -<br>Heat Tr | race Ltd -    | Evolution        | <u> </u> |                       | Circuit Breaker Size<br>Flange Spacing/Pitch<br>Flanges |
| Line Ref          |                                                           | Pipe Length       | No. Valves                 | No.      | -            |               |                  |          | tien Insulation Insul | Insulation Thickness                                    |
| DEMO-A2-4         | ¢                                                         | 15                | 0                          | 2        | Selec        | t Units fo    | r the Import     | ed Data  | Mineral Woo25         | Minimum Ambient Air Temper                              |
| DEMO-A2-I         | <b>d</b> 6                                                | 35                | 1                          | 5        |              |               |                  |          | Mineral Woo 40        | Others                                                  |
| DEMO-A2-#         | da 🛛                                                      | 33                | 0                          | 6        |              | Millimet      |                  |          | Mineral Woo 40        |                                                         |
| DEMO-A2-6         | C14                                                       | 60                | 1                          | 10       | 1            | Inches I      | ("in)            |          | Mineral Wool60        | Pipe Length                                             |
| DEMO-A2-4         |                                                           | 90                | 1                          | 12       | L            |               |                  |          | Mineral Woo 25        | Pipe Maintain Temperature                               |
| DEMO-A2-I         |                                                           | 111               | 2                          | 18       |              |               | OK               |          | Mineral Woo 25        | Pipe Max Process Temp                                   |
| DEMO-A2-4         | ¢1                                                        | 187               | 3                          | 25       |              | _             | 10.00            |          | Mineral Woo 25        | Pipe Nominal Bore                                       |
| DEMO-A2-4         | 64                                                        | 64                | 3                          | 9        |              | 45            | 200              | -10      | Mineral Woo 40        | Pipe Reference                                          |
| DEMO-A2-I         | de l                                                      | 34                | 0                          | 5        |              | 45            | 200              | -10      | Mineral Woo 40        | Pumps                                                   |
| DEMO-A2-#         | 6                                                         | 90                | 2                          | 15       |              | 45            | 200              | -10      | Mineral Woo 40        | Support Spacing/Pitch                                   |
| DEMO-A2-6         |                                                           | 9                 | 1                          | 1        |              | 5             | 90               | -10      | Mineral Woo 40        | Supports                                                |
| DEMO-A2-I         |                                                           | 45                | 3                          | 7        |              | 6             | 90               | -10      | Mineral Woo60         | Valves                                                  |
| DEMO-A2-I         |                                                           | 76                | 3                          | 11       |              | 6             | 90               | -10      | Mineral Woo60         |                                                         |
| DEMO-A2-4         | ¢10                                                       | 11                | 0                          | 0        |              | 6             | 90               | -10      | Mineral Woo 40        |                                                         |
| DEMO-A2-6         | ¢10                                                       | 78                | 1                          | 10       |              | 5             | 90               | -10      | Mineral Woo 40        |                                                         |
| DEMO-A2-#         |                                                           | 200               | 0                          | 20       |              | 6             | 90               | -10      | Mineral Woo 40        |                                                         |
| DEMO-A2-6         |                                                           | 21                | 0                          | 0        |              | 30            | 200              | -10      | Mineral Woo 40        |                                                         |
| DEMO-A24          |                                                           | 210               | 2                          | 20       |              | 30            | 200              | -10      | Mineral Woo 40        |                                                         |
| DEMO-A2-I         | da                                                        | 66                | þ                          | 4        |              | 30            | 200              | -10      | Mineral Woo40         |                                                         |


Once imported, Evolution automatically performs all calculations and product selections.



Inputting line item data manually is the single biggest drain on resource in the design process. Importing data saves all this time, and eliminates data input error.

### Mass Updates Wizard

The *Mass Updates Wizard* allows the user to update many properties of their design, or pipe dimension data, in a single action.



Enquiry design parameters often change between quotation and order placement. *Mass Updates Wizard* enables these changes to be realised in just a few minutes, significantly reducing the time spent on quotations and the commitments of an essential resource.

#### **Pipe Transfer Wizard**

The *Pipe Transfer Wizard* is used to transfer pipe data from one group to another. If the user enters many lines items of data on to a single group and then subsequently decides that the quotation would be better split into a number of groups, then the *Pipe Transfer Wizard* allows this to done.

|   |            |               | F                    | Pipe             | Tra            | ansi                          | fer W       | iza | ard                      |                                |   |
|---|------------|---------------|----------------------|------------------|----------------|-------------------------------|-------------|-----|--------------------------|--------------------------------|---|
|   | Line<br>No | Ppe Reference | Rea<br>Normal<br>Box | Thick<br>Drawn() | Page<br>Langth | Ppe<br>Martan<br>Temp<br>(*C) | Max Process | 11  | Figst<br>Loss<br>(Mills) | Spraf Huzar Selection<br>Ratio | • |
| ľ | 1          | DR1271        | 150 =                | 55               | 100.0          | 10                            | 80          | 1   | 18.90                    | 1.25217F5M2-C1                 |   |
| I | 2          | DR1273        | 150                  | 60               | 40.0           | 10                            | 70          | 1   | 17.60                    | 1.16617FSM2-CT                 |   |
| I | 3          | abc           | 300 -                | - 66             | 12.0           | 50                            | 70          | 1   | 59.00                    | 1.470 S0FSPW2-CT               |   |
| I | -4         | abc           | 150 .*               | - 55             | 25.0           | 50                            | 70          | 1   | 34.30                    | 2.000 90FSU2:NF                |   |
| t | 5          | abc           | 400 -                | 55               | 5.0            | 50                            | 70          | 1   | 72.10                    | 1.00890FSU2-NF                 |   |
| ŧ | 6          | L0273         | 150 .                | 55               | 3.0            | 10                            | 70          | 1   | 10.90                    | 1.25217FSM2-CT                 |   |
| J | 7          | DR1274        | 150 .                | 60               | 12.0           | 10                            | 70          | 1   | 17.60                    | 1.166 17FSM2-CT                |   |
|   |            |               |                      |                  |                |                               |             |     |                          |                                |   |
|   |            |               |                      |                  |                |                               |             |     |                          |                                |   |

This can also work in reverse when the user has a number of groups and wishes to consolidate the pipe line item data into fewer groups.

The *Copy* button allows the pipe data to be copied instead of moved from one group to another.


Page 75



# Bill of Material

Evolution compiles a *Bill of Material* according to the user's product and cable selections. Evolution collates product descriptions, the user's cost prices, the customer's selling prices according to the enquiry *Selling Price Structure* and determines the margin for the products.

Evolution then displays the *Bill of Material* screen. This screen shows each separate product and the total quantity required for all groups. The function of this screen is for the user to adjust and check the selling prices to be applied for this enquiry.



The *Bill of Material* is the section in the enquiry where the user can view the results of the product selections made. The user is able to add additional Heat Trace Products. The products database also includes a number of miscellaneous items such as packing, shipping, engineering and documentation, which can be added to the *Bill of Material*.

#### **Spares**

The *Bill of Material* screen has input fields for the provision of up to three types of spares. Spares can be manually added, or calculated on a percentage basis of the total quantity of the product.

| Ŀ | em | Product      |   | Descriptio  | 10           |               | -      | 10M   | Otv  |       | tert-Up .      | 21/68       | Spires (5%)    | User          | Defined (0%)   | -   |
|---|----|--------------|---|-------------|--------------|---------------|--------|-------|------|-------|----------------|-------------|----------------|---------------|----------------|-----|
|   | Vo | Reference    |   |             |              |               | ſ      |       | · ., |       | issioning (5%) |             |                |               |                |     |
|   |    |              |   |             |              |               |        |       |      | City  | Total Cost (K) | <b>Gity</b> | Total Cost (K) | <b>Gty</b> (E | Total Cost (6) |     |
| Г | 1  | 15FS52-OF    | × | Freezstop 1 | Super, 15P   | ille, 230V, b | r si   | м     | 455  | 23    |                | 23          | 176.87         | 0             | 0.00           |     |
| Г | 2  | 17FSE2-CF    | ٠ | Freezstop 8 | Extre, 17W   | m, 230V, br   | 90     | n     | 1040 | 52    | 272.48         | 52          | 272.48         | 0             | 0.00           |     |
| Г | 3  | 17FSP2-CT    | ٠ | Freezstop F | Plus, 17Wit  | n, 230V, bra  | ide    | м     | 31   | 2     | 12.22          | 2           | 12.22          | 0             | 0.00           |     |
| Г | 4  | 30FSS2-CF    |   |             |              | ile, 230V, b  |        | м     | 98   | 5     |                | 5           | 40.35          | 0             | 0.00           |     |
| Г |    | 40FS52-CF    |   |             |              | ilm, 230V, b  |        | м     | 110  | 6     |                | 6           | 50.00          | 0             | 0.00           |     |
| Е |    | 45FSEW2-CF   |   |             |              | Hh, 230V, br  |        | n     | 154  | 8     |                |             | 46.72          | 0             | 0.00           |     |
| Г |    | 55FS52-CF    |   |             |              | ilm, 230V, b  |        | м     | 2307 | 116   |                | 116         | 1032.40        | 0             | 0.00           |     |
| E | 8  | 60FSEW2-CF   |   |             |              | H, 230V, br   |        | n     | 51   | 3     |                | 3           | 18.21          | 0             | 0.00           |     |
| Г | 9  | 90FSU2-NF    |   |             |              | ilin 230v, No |        | n     | 275  | - 14  |                | 14          | 237.02         | 0             | 0.00           |     |
| Г | 10 | 0053         | ٠ | End See Kit | t, Silcone I | habber Boot,  | N.     | E0    | 100  | - 5   | 4.50           | 5           | 4.50           | 0             | 0.00           |     |
| Г | 11 | BP52         |   |             |              | e Flutter, N  | i0.    | Ee    | 100  | 5     | 9.40           | 5           | 9.40           | 0             | 0.00           |     |
| Г | 12 | α,           |   | Caution Lab |              |               |        | Ee    | 910  | -45   | 0.74           | 46          | 0.74           | 0             | 0.00           |     |
| Е |    | CT-FL/2C/A/K |   |             |              |               |        | Ee    | 48   | 3     | 300.90         | 3           | 300.90         | 0             | 0.00           |     |
| Г |    |              |   |             |              | 20-110C, 10   | [A     | Ee    | 19   | 1     | 100.46         | 1           | 100.46         | 0             | 0.00           | -11 |
| Е |    | FTIALUM      |   | Foring Tape |              |               |        | Ee    | 4    | 1     | 8.24           | 1           | 8.24           | 0             | 0.00           |     |
|   |    | FTAITS       |   |             |              | hesive, 50m   | rol    | Ea    | 143  | - 0   |                | 0           | 65.92          | 0             | 0.00           |     |
| E | 17 | 189000       |   | Ancton Bo   |              |               |        | Ee    | 84   | - 5   | 160.55         | 5           | 160.55         | 0             | 0.00           |     |
|   |    | PINS         |   | Pipe nounti |              |               |        | Ee    | - 04 | 5     | \$7.70         |             | 57.70          | 0             | 0.00           |     |
|   |    | FF 5025      |   | Date Fixing |              |               | _      | Fa    | 1.0  | 1     | 1.30           |             | 1.30           | 6             | 0.00           |     |
| K | 2  |              | B | Cestings    | Lock All     | UnLock All    | Lock R | tange | Т    | otals | 2653.79        |             | 2653.79        |               | 0.00           | •   |
|   | :e | -            | _ | a Method    |              | Ing Prices    | N. dat |       | _    | 0     | Currency Type  | Sterk       | a IV Decis     | mi Place      | 2              | 5   |
| K | 2  |              |   | _           | _            | UnLock All    | Lock R |       | Т    | otals | 2653.79        | _           | 2653.79        | (             | 0.00           | •   |

### **Price and Margin Adjustment**

There are a number of ways in which prices and margins can be manipulated. The simplest way is to go to the price or margin that needs changing and simply type the new value. If a cost price or selling price is changed, then the margin will be recalculated automatically. If a margin is changed, then the selling price will be recalculated automatically.

The *Selling Price Structure* for the enquiry can also be viewed and amended. Amendments will cause the selling prices and margins to be recalculated.

|                  |                      |            | i otais |
|------------------|----------------------|------------|---------|
| Pricing Method   | Amend Selling Prices | % discount | 0       |
| Cost Plus % Marg |                      | Set Margin |         |
| % Margin         | 30                   |            |         |
|                  |                      |            |         |

The user can use the *Set Margin* field to set the margin of many product lines in one action. All the selling prices will then be recalculated.

The user can use the % *Discount* field to reduce or increase the selling prices by a percentage. The selling prices and margins will be recalculated.

| Currency Type Euros            |   |
|--------------------------------|---|
| Exchange Rate 1.50 Font Size 8 | - |

Currency and exchange rates can be set for the enquiry



# Bill of Material

### **Bill of Material Controls**

The user can change the item number for each line of the *Bill* of *Material*. This allows the user to sequence the items into any order. The item numbers can then be automatically renumbered.

| 2  | tem |            |    | Description                                          | UOM     | Oty  |               | Ext Cost      |                | Ext Sell     | Quote        | % •      |
|----|-----|------------|----|------------------------------------------------------|---------|------|---------------|---------------|----------------|--------------|--------------|----------|
| 2  | 100 | Heference  | •  |                                                      |         |      | Price<br>(10) | Price<br>(10) | Price<br>(®    | Price<br>(®) | Seting<br>(® | Margin   |
| ł  | 1   | 197552-CF  |    | Freezotop Super, 19Min, 230V, brai                   | м       | 104  | 7.69          |               |                | 1.141.92     | 1.141.92     | 30       |
| 1  | 2   | 17FSE2-CF  |    | Freezstop Extra, 17WM, 230V, brasc                   |         | 1040 | 5.24          | 5.449.60      | 7.48           | 7,779.20     | 7,779,20     | 30       |
| ٦  | 3   | 17FSP2-CT  |    | Freezstop Plus, 17W/m, 230V, br                      | M       | 31   | 6.11          | 189.41        | 8.72           | 270.32       | 270.32       |          |
| -  | 4   | 30FS52-CF  |    | Freezstop Super, 3WVm, 238V, t                       | м       | 316  | 8.87          | 2,558.12      | 11.52          | 3,648.32     | 3,648.32     |          |
|    | 5   | 40FSS2-CF  | ٠  | Freezstop Super, 4Wilm, 238V, t                      | M       | 118  | 8.48          | 1,000.54      | 12.11          | 1,428.98     | 1,428.98     | 30       |
|    | 6   | 45FSEW2-CF |    | Freezotop Extra, 45Wim, 238V, br                     | m       | 285  | 5.84          | 1,197.28      | 8,34           | 1,789.70     | 1,709.70     |          |
|    | 7   | SSFSS2-CF  | ٠  | Freezstop Super, SSW(m, 238V, t                      | м       | 2384 | 8.98          | 21,217.60     | 12.71          | 30,300.64    | 30,300.64    | 30       |
| 0  | 8   | SRF SU2-NF |    | Freezstop Ultimo, 90VCm 230v, N                      | m       | 321  | 16.93         | 5,434.53      |                | 7,761.78     | 7,761.78     |          |
| 1  | 9   | 0623       |    | End Seal Hit, Silicone Rubber Boot, N                | Ee      | 109  | 0.90          | 90.10         | 1.20           | 139.52       | 139.52       |          |
|    | 10  | 0PS2       | ٠  | Power Seal Kit, Silcone Rubber, No.                  | Ee      | 109  | 1.00          | 204.92        | 2.60           | 292.12       | 292.12       |          |
| 1  | 11  | a.         |    | Caution Labels                                       | En      | 950  | 0.19          |               |                | 258.50       | 256.50       |          |
| 4  | 12  | CT-FLQCMX  | ٠  | Capital Capillary Stat, 0-40C, 16A m                 | Ee      | -40  |               | 4,014.39      | 143.20         | 6,877.44     | 6,877,44     |          |
| 4  |     | CT-FLOCBIX |    | Capital Capillary Stat, 20-110C, 16A                 | En      | 19   |               | 1,908.73      | 143.51         | 2,726.69     | 2,726.69     |          |
| 4  |     | FTIALUM    |    | Foring Tape, Aluminium, 45m roll                     | Eo      | - 4  | 0.24          | 32.96         | 11,77          | 47.00        | 47.00        |          |
| 4  |     | 45FSPW2-CT |    | Freezstop Plus, 45V/m, 230V, braide                  | M       | 28   | 6.90          | 179.40        | 9.85           | 258.10       | 256.10       |          |
| 4  | 16  | 45FSU2-NF  |    | Freezstop Ultimo, 49Win 230v, Nicke                  | n       | 134  | 13.75         |               | 19.64          | 2,631.76     | 2,631.76     |          |
| 4  | 17  | FTAITS     |    | Foring Tape, Olass adhesive, 50m rol<br>Aurction Box | Ee      | 151  | 8.24          | 1,244.24      | 11.77<br>45.07 | 1,777.27     | 1,777.27     |          |
| 4  | 10  | 105000     |    | Anction Box<br>Dre mounting trackets, Seal           | Ea      |      |               |               |                | 4,174,17     | 4,174,17     |          |
|    |     |            |    |                                                      | k Range |      |               | 52,875,17     |                | 75,507.69    | 75.507.69    |          |
| 17 | 11  | 4 1 2      | LS | syares cook re concock re coo                        | e nange |      | otais         | 042010.17     |                | 10,007.00    | 10,007.00    | 20.00.00 |

Items on the *Bill of Material* can be locked so that any automatic changes, caused by applying discounts or setting margins do not affect the locked item. Locked items are highlighted.



The *Lock BOM* button locks the entire bill of material. Once locked the *Bill of Material* cannot be edited or any prices recalculated.

Locking individual items, or the entire *Bill of Material*, is particularly useful in preventing unwanted changes.

### **Preview Products**

The *Preview Products* button uses the features of the *Product Library* to display a graphic of each of the products listed in the *Bill of Material*. With a few simple clicks, the user can navigate to view datasheets and product literature of the selected products. This further negates the need for the user to have more than just basic product knowledge.

I ← Page 1 of 13 ► ►

roduct Libra



### Product Search and Select

The *Product Search* button again uses the features of the *Product Library*, but this time, it allows the user to find products in the database. The product can then be automatically added to the *Bill of Material* together with appropriate pricing.



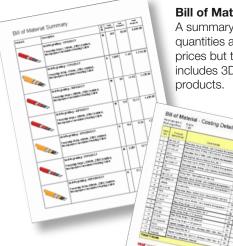




### Quotations & Reports – It's all for free.

Evolution comes equipped with all the predefined reports required to satisfy everyone from the engineer and company accountant to the procurement officer and installer.

Reports are broken down into a number of categories:


### **Bill of Material Reports**



**Bill of Material List** A summary of all products, quantities and quotation selling prices.

### Bill of Material List by Group

Similar to the above report but this report is broken down to give an individual *Bill of Material* for each pipe group.



### Bill of Material Summary

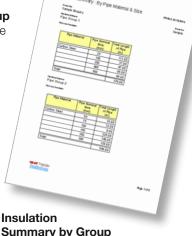
A summary of all products, quantities and quotation selling prices but this report also includes 3D illustrations of the products.

# Bill of Material Full Costing Summary

A summary of all products and quantities. This report also includes all product costings, selling prices and margins.

### **Product Reports**

**Product Datasheets** – Prints a copy of all datasheets for the products listed in the *Bill of Material*.


### **Quotation Reports**

**Short Quotation** – A short quotation printing the cover letter and *Bill of Material* Summary.

**Full Quotation** – Compiles a quotation from a quotation template. Templates produced in the *Document Designer* can include text paragraphs, enquiry reports and pre-loaded Microsoft Word documents. Evolution can create a cover letter from a user defined template as a Microsoft Word document. There is an option to include datasheets, that when selected, will print a copy of all the datasheets that relate to the products in the *Bill of Material.* 

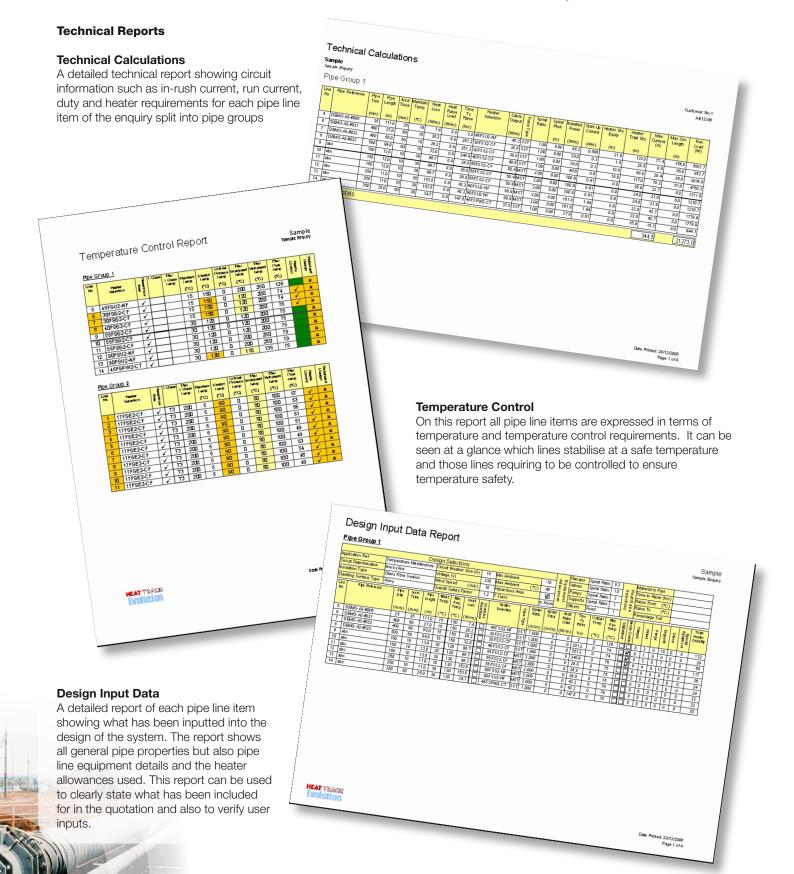
#### **Summary Reports**

**Pipe Size Summary by Group** A summary of each size of pipe and the total length of pipe for each group.



# **Summary by Group** A summary of thermal

insulation requirements for each pipe size by group. This report can be used to determine the insulation insulation requirements of the project.


### **Heater Quantity Summary**

A summary of the range of heating cables required for the enquiry, showing the type and quantity for each group.

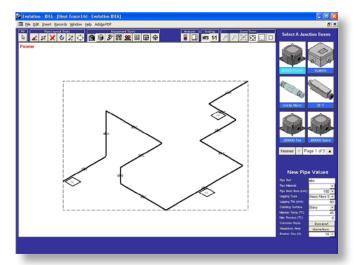


Page 78

Quotations & Reports – It's all for free.



Page 79

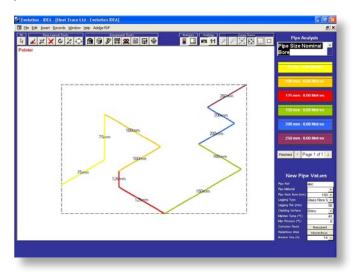

**EVOLUTION – Enquiry Modelling** 



### The Bigger Picture – Much more than calculations and product selections

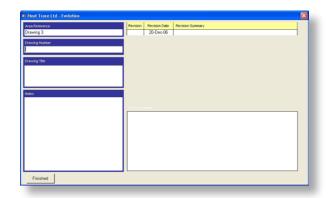
### Intuitive Drawing Exchange Application (IDEA)

Evolution has its own *Intuitive Isometric Drawing Package* **IDEA**. The user can draw isometric pipe layout systems on screen, simply using a mouse. It is not necessary to have any knowledge of CAD systems. **IDEA** operates more like a computerised sketchpad.




The main principle is that when the user draws a line on the sketchpad it knows it's a piece of pipe with all properties such as size, insulation type and thickness, length and temperatures. As soon as the user clicks to complete drawing a line **IDEA** writes the pipe data into the pipe dimensions list of the enquiry, automatically calculates heat loss, heat raise loads, selects the most appropriate heat tracer and determines stabilised design and temperature control requirements. Although the sketchpad is currently only viewed in 2 dimensions, **IDEA** builds a 3 dimensional understanding of the piping system.

Using simple tools and wizards, it is possible to add equipment such as pumps and valves, position junction boxes, determine circuits and add temperature control and monitoring equipment.


Evolution can now compile an isometric drawing as if produced on a CAD system, and produce a calculated *Bill of Material*. The drawings can then be converted to a file format compatible with CAD systems such as AutoCAD.

The interface between the drawing and all other functions of Evolution are seamless and the user can move between the drawing and the pipe dimensions screen, making changes in either. **IDEA** can also be used to analyse the heat tracing system to view any temperature control issues or to select the best position for a thermostat.



It is obvious that with Evolution's **IDEA**, there are enormous savings in expensive CAD resource. Drawings, calculations, designs, reports and quotations happen simultaneously. Simply draw the pipe layout and the job is done.

**IDEA** has a built in drawing management screen to control revisions and amendments



With **IDEA** Evolution really is the Complete Heat Tracing Design Software.



### Getting Help and support

### **Engineering Support**

When working with Evolution, Help and Support is never far away. Enquiry data entered can be e-mailed to Heat Trace or any other user with a copy of Evolution. They can then import the enquiry directly into their Evolution and work with the enquiry.

It may be that, for certain enquiries, additional support from Heat Trace is required to confirm the design or to offer alternative solutions to generate a more competitive quotation. Simply E-mail the enquiry to Heat Trace and within seconds we can be reviewing the enquiry data. Once reviewed it can be E-mailed back to the user to update the design.

### Web Site Help and Support

Heat Trace's web site has a special section for registered users. The section contains information relating to latest updates, the latest software user's guide, tutorials, FAQ's and news on the latest developments.



#### Heat Trace EVOLVING to meet the demands of the Future.

Heat Trace is committed to continue to develop and improve it's Evolution software, ensuring that it continues to stay ahead of the competition.

### Further developments include:

- Application wizards for specific heat tracing applications.
- Enhanced reporting to allow the user to develop custom reports.
- Drawing / Document Control application.
- Project scheduling and planning application with gant chart creation.
- Addition of commercial and residential heat tracing applications.
- Multi-Lingual versions of Evolution.
- Multi-Media presentations for termination and Installation of Heat Trace products.

### The Heat Tracing Authority™



### Notes

**EVOLUTION – The Complete Design Tool** 



Notes

Page 83

**EVOLUTION – The Complete Design Tool** 





# A Guide to Industrial Electric Heat Tracing



Heat Trace Limited, Mere's Edge, Chester Road, Helsby, Frodsham, Cheshire, WA6 0DJ, England. Tel: +44 (0)1928 726 451 Fax: +44 (0)1928 727 846 www.heat-trace.com